You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

210 lines
7.7 KiB

from enum import Enum
import stormpy.core
class SimulatorObservationMode(Enum):
STATE_LEVEL = 0,
PROGRAM_LEVEL = 1
class SimulatorActionMode(Enum):
INDEX_LEVEL = 0,
GLOBAL_NAMES = 1
class Simulator:
"""
Base class for simulators.
"""
def __init__(self, seed=None):
self._seed = seed
self._observation_mode = SimulatorObservationMode.STATE_LEVEL
self._action_mode = SimulatorActionMode.INDEX_LEVEL
self._full_observe = False
def available_actions(self):
"""
Returns an iterable over the available actions.
The action mode may be used to select how actions are referred to.
:return:
"""
raise NotImplementedError("Abstract Superclass")
def step(self, action=None):
"""
Do a step taking the passed action.
:param action: The index of the action, for deterministic actions, action may be None.
:return: The observation (on state or program level).
"""
raise NotImplementedError("Abstract superclass")
def restart(self):
"""
Reset the simulator to the initial state
"""
raise NotImplementedError("Abstract superclass")
def is_done(self):
"""
Is the simulator in a sink state?
:return: Yes, if the simulator is in a sink state.
"""
return False
def set_observation_mode(self, mode):
"""
Select the observation mode, that is, how the states are represented
:param mode: STATE_LEVEL or PROGRAM_LEVEL
:type mode:
"""
if not isinstance(mode, SimulatorObservationMode):
raise RuntimeError("Observation mode must be a SimulatorObservationMode")
self._observation_mode = mode
def set_action_mode(self, mode):
"""
Select the action mode, that is, how the actions are represented
:param mode: SimulatorActionMode.INDEX_LEVEL or SimulatorActionMode.GLOBAL_NAMES
:return:
"""
if not isinstance(mode, SimulatorActionMode):
raise RuntimeError("Action mode must be a SimulatorActionMode")
self._action_mode = mode
def set_full_observability(self, value):
"""
Sets whether the full state space is observable.
Default inherited from the model, but this method overrides the setting.
:param value:
"""
self._full_observe = value
class SparseSimulator(Simulator):
"""
Simulator on top of sparse models.
"""
def __init__(self, model, seed=None):
super().__init__(seed)
self._model = model
self._engine = stormpy.core._DiscreteTimeSparseModelSimulatorDouble(model)
if seed is not None:
self._engine.set_seed(seed)
self._state_valuations = None
self.set_full_observability(self._model.model_type != stormpy.storage.ModelType.POMDP)
def available_actions(self):
if self._action_mode == SimulatorActionMode.INDEX_LEVEL:
return range(self.nr_available_actions())
else:
assert self._action_mode == SimulatorActionMode.GLOBAL_NAMES, "Unknown type of simulator action mode"
if not self._model.has_choice_labeling():
raise RuntimeError("Global names action mode requires model with choice labeling")
av_actions = []
current_state = self._engine.get_current_state()
for action_offset in range(self.nr_available_actions()):
choice_label = self._model.choice_labeling.get_labels_of_choice(self._model.get_choice_index(current_state, action_offset))
if len(choice_label) == 0:
av_actions.append(f"_act_{action_offset}")
elif len(choice_label) == 1:
av_actions.append(list(choice_label)[0])
else:
assert False, "Unknown type of choice label, support not implemented"
return av_actions
def nr_available_actions(self):
if not self._model.is_nondeterministic_model:
return 1
return self._model.get_nr_available_actions(self._engine.get_current_state())
def _report_state(self):
if self._observation_mode == SimulatorObservationMode.STATE_LEVEL:
return self._engine.get_current_state()
elif self._observation_mode == SimulatorObservationMode.PROGRAM_LEVEL:
return self._state_valuations.get_json(self._engine.get_current_state())
assert False, "The observation mode is unexpected"
def _report_observation(self):
"""
:return:
"""
#TODO this should be ensured earlier
assert self._model.model_type == stormpy.storage.ModelType.POMDP
if self._observation_mode == SimulatorObservationMode.STATE_LEVEL:
return self._model.get_observation(self._engine.get_current_state())
elif self._observation_mode == SimulatorObservationMode.PROGRAM_LEVEL:
raise NotImplementedError("Program level observations are not implemented in storm")
assert False, "The observation mode is unexpected"
def _report_result(self):
if self._full_observe:
return self._report_state(), self._report_rewards()
else:
return self._report_observation(), self._report_rewards()
def _report_rewards(self):
return self._engine.get_last_reward()
def step(self, action=None):
if action is None:
if self._model.is_nondeterministic_model and self.nr_available_actions() > 1:
raise RuntimeError("Must specify an action in nondeterministic models.")
check = self._engine.step(0)
assert check
elif type(action) == int and self._action_mode == SimulatorActionMode.INDEX_LEVEL:
if action >= self.nr_available_actions():
raise RuntimeError(f"Only {self.nr_available_actions()} actions available")
check = self._engine.step(action)
assert check
elif self._action_mode == SimulatorActionMode.GLOBAL_NAMES:
action_index = None
av_actions = self.available_actions()
for offset, label in enumerate(av_actions):
if action == label:
action_index = offset
break
if action_index is None:
raise ValueError(f"Could not find action: {action}")
check = self._engine.step(action_index)
assert check
else:
raise ValueError(f"Unrecognized type of action {action}")
return self._report_result()
def restart(self):
self._engine.reset_to_initial_state()
return self._report_result()
def is_done(self):
return self._model.is_sink_state(self._engine.get_current_state())
def set_observation_mode(self, mode):
super().set_observation_mode(mode)
if self._observation_mode == SimulatorObservationMode.PROGRAM_LEVEL:
if not self._model.has_state_valuations():
raise RuntimeError("Program level observations require model with state valuations")
self._state_valuations = self._model.state_valuations
def create_simulator(model, seed = None):
"""
Factory method for creating a simulator.
:param model: Some form of model
:param seed: A seed for reproducibility. If None (default), the seed is internally generated.
:return: A simulator that can simulate on top of this model
"""
if isinstance(model, stormpy.storage._ModelBase):
if model.is_sparse_model:
return SparseSimulator(model, seed)
else:
raise NotImplementedError("Currently, we only support simulators for sparse models.")