You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

114 lines
3.3 KiB

import gymnasium as gym
import minigrid
# import numpy as np
# import ray
from ray.tune import register_env
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.algorithms.dqn.dqn import DQNConfig
# from ray.rllib.algorithms.callbacks import DefaultCallbacks
from ray.tune.logger import pretty_print
from ray.rllib.models import ModelCatalog
from TorchActionMaskModel import TorchActionMaskModel
from Wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
from helpers import parse_arguments, create_log_dir, ShieldingConfig
from ShieldHandlers import MiniGridShieldHandler
import matplotlib.pyplot as plt
from ray.tune.logger import TBXLogger
def shielding_env_creater(config):
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
framestack = config.get("framestack", 4)
args = config.get("args", None)
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt"
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism"
shielding = config.get("shielding", False)
# if shielding:
# assert(False)
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula)
env = gym.make(name)
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, mask_actions=shielding)
env = OneHotShieldingWrapper(env,
config.vector_index if hasattr(config, "vector_index") else 0,
framestack=framestack
)
return env
def register_minigrid_shielding_env(args):
env_name = "mini-grid-shielding"
register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model(
"shielding_model",
TorchActionMaskModel
)
def ppo(args):
register_minigrid_shielding_env(args)
config = (PPOConfig()
.rollouts(num_rollout_workers=args.workers)
.resources(num_gpus=0)
.environment( env="mini-grid-shielding",
env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Enabled or args.shielding is ShieldingConfig.Training})
.framework("torch")
.evaluation(evaluation_config={ "evaluation_interval": 1,
"evaluation_parallel_to_training": False,
"env": "mini-grid-shielding",
"env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Enabled or args.shielding is ShieldingConfig.Evaluation}})
#.callbacks(MyCallbacks)
.rl_module(_enable_rl_module_api = False)
.debugging(logger_config={
"type": TBXLogger,
"logdir": create_log_dir(args)
})
.training(_enable_learner_api=False ,model={
"custom_model": "shielding_model"
}))
algo =(
config.build()
)
iterations = args.iterations
for i in range(iterations):
algo.train()
if i % 5 == 0:
algo.save()
for i in range(iterations):
eval_result = algo.evaluate()
print(pretty_print(eval_result))
def main():
import argparse
args = parse_arguments(argparse)
ppo(args)
if __name__ == '__main__':
main()