You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
267 lines
9.1 KiB
267 lines
9.1 KiB
from typing import Dict, Optional, Union
|
|
from ray.rllib.env.base_env import BaseEnv
|
|
from ray.rllib.evaluation import RolloutWorker
|
|
from ray.rllib.evaluation.episode import Episode
|
|
from ray.rllib.evaluation.episode_v2 import EpisodeV2
|
|
from ray.rllib.policy import Policy
|
|
from ray.rllib.utils.typing import PolicyID
|
|
import stormpy
|
|
import stormpy.core
|
|
import stormpy.simulator
|
|
|
|
from collections import deque
|
|
|
|
import stormpy.shields
|
|
import stormpy.logic
|
|
|
|
import stormpy.examples
|
|
import stormpy.examples.files
|
|
import os
|
|
|
|
import gymnasium as gym
|
|
|
|
import minigrid
|
|
import numpy as np
|
|
|
|
import ray
|
|
from ray.tune import register_env
|
|
from ray.rllib.algorithms.ppo import PPOConfig
|
|
from ray.rllib.utils.test_utils import check_learning_achieved, framework_iterator
|
|
from ray import tune, air
|
|
from ray.rllib.algorithms.callbacks import DefaultCallbacks
|
|
from ray.tune.logger import pretty_print
|
|
from ray.rllib.utils.numpy import one_hot
|
|
from ray.rllib.algorithms import ppo
|
|
|
|
from ray.rllib.models.preprocessors import get_preprocessor
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import argparse
|
|
|
|
|
|
class MyCallbacks(DefaultCallbacks):
|
|
def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None:
|
|
# print(F"Epsiode started Environment: {base_env.get_sub_environments()}")
|
|
env = base_env.get_sub_environments()[0]
|
|
episode.user_data["count"] = 0
|
|
# print(env.printGrid())
|
|
# print(env.action_space.n)
|
|
# print(env.actions)
|
|
# print(env.mission)
|
|
# print(env.observation_space)
|
|
# img = env.get_frame()
|
|
# plt.imshow(img)
|
|
# plt.show()
|
|
|
|
def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy] | None = None, episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None:
|
|
episode.user_data["count"] = episode.user_data["count"] + 1
|
|
env = base_env.get_sub_environments()[0]
|
|
# print(env.env.env.printGrid())
|
|
|
|
def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2 | Exception, env_index: int | None = None, **kwargs) -> None:
|
|
# print(F"Epsiode end Environment: {base_env.get_sub_environments()}")
|
|
env = base_env.get_sub_environments()[0]
|
|
# print(env.env.env.printGrid())
|
|
# print(episode.user_data["count"])
|
|
|
|
|
|
|
|
|
|
class OneHotWrapper(gym.core.ObservationWrapper):
|
|
def __init__(self, env, vector_index, framestack):
|
|
super().__init__(env)
|
|
self.framestack = framestack
|
|
# 49=7x7 field of vision; 11=object types; 6=colors; 3=state types.
|
|
# +4: Direction.
|
|
self.single_frame_dim = 49 * (11 + 6 + 3) + 4
|
|
self.init_x = None
|
|
self.init_y = None
|
|
self.x_positions = []
|
|
self.y_positions = []
|
|
self.x_y_delta_buffer = deque(maxlen=100)
|
|
self.vector_index = vector_index
|
|
self.frame_buffer = deque(maxlen=self.framestack)
|
|
for _ in range(self.framestack):
|
|
self.frame_buffer.append(np.zeros((self.single_frame_dim,)))
|
|
|
|
self.observation_space = gym.spaces.Box(
|
|
0.0, 1.0, shape=(self.single_frame_dim * self.framestack,), dtype=np.float32
|
|
)
|
|
|
|
def observation(self, obs):
|
|
# Debug output: max-x/y positions to watch exploration progress.
|
|
if self.step_count == 0:
|
|
for _ in range(self.framestack):
|
|
self.frame_buffer.append(np.zeros((self.single_frame_dim,)))
|
|
if self.vector_index == 0:
|
|
if self.x_positions:
|
|
max_diff = max(
|
|
np.sqrt(
|
|
(np.array(self.x_positions) - self.init_x) ** 2
|
|
+ (np.array(self.y_positions) - self.init_y) ** 2
|
|
)
|
|
)
|
|
self.x_y_delta_buffer.append(max_diff)
|
|
print(
|
|
"100-average dist travelled={}".format(
|
|
np.mean(self.x_y_delta_buffer)
|
|
)
|
|
)
|
|
self.x_positions = []
|
|
self.y_positions = []
|
|
self.init_x = self.agent_pos[0]
|
|
self.init_y = self.agent_pos[1]
|
|
|
|
|
|
self.x_positions.append(self.agent_pos[0])
|
|
self.y_positions.append(self.agent_pos[1])
|
|
|
|
# One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten.
|
|
objects = one_hot(obs[:, :, 0], depth=11)
|
|
colors = one_hot(obs[:, :, 1], depth=6)
|
|
states = one_hot(obs[:, :, 2], depth=3)
|
|
|
|
all_ = np.concatenate([objects, colors, states], -1)
|
|
all_flat = np.reshape(all_, (-1,))
|
|
direction = one_hot(np.array(self.agent_dir), depth=4).astype(np.float32)
|
|
single_frame = np.concatenate([all_flat, direction])
|
|
self.frame_buffer.append(single_frame)
|
|
return np.concatenate(self.frame_buffer)
|
|
|
|
|
|
|
|
def parse_arguments(argparse):
|
|
parser = argparse.ArgumentParser()
|
|
# parser.add_argument("--env", help="gym environment to load", default="MiniGrid-Empty-8x8-v0")
|
|
parser.add_argument("--env", help="gym environment to load", default="MiniGrid-LavaCrossingS9N1-v0")
|
|
parser.add_argument("--seed", type=int, help="seed for environment", default=1)
|
|
parser.add_argument("--tile_size", type=int, help="size at which to render tiles", default=32)
|
|
parser.add_argument("--agent_view", default=False, action="store_true", help="draw the agent sees")
|
|
parser.add_argument("--grid_path", default="Grid.txt")
|
|
parser.add_argument("--prism_path", default="Grid.PRISM")
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def env_creater(config):
|
|
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
|
|
# name = config.get("name", "MiniGrid-Empty-8x8-v0")
|
|
framestack = config.get("framestack", 4)
|
|
|
|
env = gym.make(name)
|
|
# env = minigrid.wrappers.RGBImgPartialObsWrapper(env)
|
|
env = minigrid.wrappers.ImgObsWrapper(env)
|
|
env = OneHotWrapper(env,
|
|
config.vector_index if hasattr(config, "vector_index") else 0,
|
|
framestack=framestack
|
|
)
|
|
|
|
|
|
return env
|
|
|
|
|
|
def create_shield(grid_file, prism_path):
|
|
os.system(F"/home/tknoll/Documents/main -v 'agent' -i {grid_file} -o {prism_path}")
|
|
|
|
f = open(prism_path, "a")
|
|
f.write("label \"AgentIsInLava\" = AgentIsInLava;")
|
|
f.close()
|
|
|
|
|
|
program = stormpy.parse_prism_program(prism_path)
|
|
formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
|
|
|
|
formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
|
|
options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
|
|
options.set_build_state_valuations(True)
|
|
options.set_build_choice_labels(True)
|
|
options.set_build_all_labels()
|
|
model = stormpy.build_sparse_model_with_options(program, options)
|
|
|
|
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.1)
|
|
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
|
|
|
|
assert result.has_scheduler
|
|
assert result.has_shield
|
|
shield = result.shield
|
|
|
|
stormpy.shields.export_shield(model, shield,"Grid.shield")
|
|
|
|
return shield.construct(), model
|
|
|
|
def export_grid_to_text(env, grid_file):
|
|
f = open(grid_file, "w")
|
|
print(env)
|
|
f.write(env.printGrid(init=True))
|
|
# f.write(env.pprint_grid())
|
|
f.close()
|
|
|
|
def create_environment(args):
|
|
env_id= args.env
|
|
env = gym.make(env_id)
|
|
env.reset()
|
|
return env
|
|
|
|
|
|
def main():
|
|
args = parse_arguments(argparse)
|
|
|
|
env = create_environment(args)
|
|
ray.init(num_cpus=3)
|
|
|
|
# print(env.pprint_grid())
|
|
# print(env.printGrid(init=False))
|
|
|
|
grid_file = args.grid_path
|
|
export_grid_to_text(env, grid_file)
|
|
|
|
prism_path = args.prism_path
|
|
shield, model = create_shield(grid_file, prism_path)
|
|
|
|
for state_id in model.states:
|
|
choices = shield.get_choice(state_id)
|
|
print(F"Allowed choices in state {state_id}, are {choices.choice_map} ")
|
|
|
|
env_name = "mini-grid"
|
|
register_env(env_name, env_creater)
|
|
|
|
|
|
algo =(
|
|
PPOConfig()
|
|
.rollouts(num_rollout_workers=1)
|
|
.resources(num_gpus=0)
|
|
.environment(env="mini-grid")
|
|
.framework("torch")
|
|
.callbacks(MyCallbacks)
|
|
.training(model={
|
|
"fcnet_hiddens": [256,256],
|
|
"fcnet_activation": "relu",
|
|
|
|
})
|
|
.build()
|
|
)
|
|
episode_reward = 0
|
|
terminated = truncated = False
|
|
obs, info = env.reset()
|
|
|
|
# while not terminated and not truncated:
|
|
# action = algo.compute_single_action(obs)
|
|
# obs, reward, terminated, truncated = env.step(action)
|
|
|
|
for i in range(30):
|
|
result = algo.train()
|
|
print(pretty_print(result))
|
|
|
|
if i % 5 == 0:
|
|
checkpoint_dir = algo.save()
|
|
print(f"Checkpoint saved in directory {checkpoint_dir}")
|
|
|
|
|
|
|
|
ray.shutdown()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|