You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
3.8 KiB
121 lines
3.8 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Example how to combine shielding with rllibs dqn algorithm."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import gymnasium as gym\n",
|
|
"\n",
|
|
"import minigrid\n",
|
|
"\n",
|
|
"from ray import tune, air\n",
|
|
"from ray.tune import register_env\n",
|
|
"from ray.rllib.algorithms.dqn.dqn import DQNConfig\n",
|
|
"from ray.tune.logger import pretty_print\n",
|
|
"from ray.rllib.models import ModelCatalog\n",
|
|
"\n",
|
|
"\n",
|
|
"from torch_action_mask_model import TorchActionMaskModel\n",
|
|
"from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper\n",
|
|
"from shieldhandlers import MiniGridShieldHandler, create_shield_query\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def shielding_env_creater(config):\n",
|
|
" name = config.get(\"name\", \"MiniGrid-LavaCrossingS9N1-v0\")\n",
|
|
" framestack = config.get(\"framestack\", 4)\n",
|
|
" \n",
|
|
" shield_creator = MiniGridShieldHandler(\"grid.txt\", \"./main\", \"grid.prism\", \"Pmax=? [G !\\\"AgentIsInLavaAndNotDone\\\"]\")\n",
|
|
" \n",
|
|
" env = gym.make(name)\n",
|
|
" env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=True)\n",
|
|
" env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, \"vector_index\") else 0,\n",
|
|
" framestack=framestack)\n",
|
|
" \n",
|
|
" return env\n",
|
|
"\n",
|
|
"\n",
|
|
"def register_minigrid_shielding_env():\n",
|
|
" env_name = \"mini-grid-shielding\"\n",
|
|
" register_env(env_name, shielding_env_creater)\n",
|
|
" ModelCatalog.register_custom_model(\n",
|
|
" \"shielding_model\", \n",
|
|
" TorchActionMaskModel)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"register_minigrid_shielding_env()\n",
|
|
"\n",
|
|
" \n",
|
|
"config = DQNConfig()\n",
|
|
"config = config.resources(num_gpus=0)\n",
|
|
"config = config.rollouts(num_rollout_workers=1)\n",
|
|
"config = config.environment(env=\"mini-grid-shielding\", env_config={\"name\": \"MiniGrid-LavaCrossingS9N1-v0\" })\n",
|
|
"config = config.framework(\"torch\")\n",
|
|
"config = config.rl_module(_enable_rl_module_api = False)\n",
|
|
"config = config.training(hiddens=[], dueling=False, model={ \n",
|
|
" \"custom_model\": \"shielding_model\"\n",
|
|
"})\n",
|
|
"\n",
|
|
"tuner = tune.Tuner(\"DQN\",\n",
|
|
" tune_config=tune.TuneConfig(\n",
|
|
" metric=\"episode_reward_mean\",\n",
|
|
" mode=\"max\",\n",
|
|
" num_samples=1,\n",
|
|
" \n",
|
|
" ),\n",
|
|
" run_config=air.RunConfig(\n",
|
|
" stop = {\"episode_reward_mean\": 94,\n",
|
|
" \"timesteps_total\": 12000,\n",
|
|
" \"training_iteration\": 12}, \n",
|
|
" checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ),\n",
|
|
" ),\n",
|
|
" param_space=config,)\n",
|
|
"\n",
|
|
"tuner.fit()\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "env",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|