You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

74 lines
2.3 KiB

from sb3_contrib import MaskablePPO
from sb3_contrib.common.maskable.evaluation import evaluate_policy
from sb3_contrib.common.maskable.policies import MaskableActorCriticPolicy
from sb3_contrib.common.wrappers import ActionMasker
from stable_baselines3.common.callbacks import BaseCallback
import gymnasium as gym
from minigrid.core.actions import Actions
import time
from helpers import parse_arguments, create_log_dir, ShieldingConfig
from shieldhandlers import MiniGridShieldHandler, create_shield_query
from wrappers import MiniGridSbShieldingWrapper
class CustomCallback(BaseCallback):
def __init__(self, verbose: int = 0, env=None):
super(CustomCallback, self).__init__(verbose)
self.env = env
def _on_step(self) -> bool:
print(self.env.printGrid())
return super()._on_step()
def mask_fn(env: gym.Env):
return env.create_action_mask()
def main():
import argparse
args = parse_arguments(argparse)
args.grid_path = F"{args.grid_path}.txt"
args.prism_path = F"{args.prism_path}.prism"
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula)
env = gym.make(args.env, render_mode="rgb_array")
env = MiniGridSbShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query, mask_actions=args.shielding == ShieldingConfig.Full)
env = ActionMasker(env, mask_fn)
callback = CustomCallback(1, env)
model = MaskablePPO(MaskableActorCriticPolicy, env, gamma=0.4, verbose=1, tensorboard_log=create_log_dir(args))
iterations = args.iterations
if iterations < 10_000:
iterations = 10_000
model.learn(iterations, callback=callback)
#W mean_reward, std_reward = evaluate_policy(model, model.get_env())
vec_env = model.get_env()
obs = vec_env.reset()
terminated = truncated = False
while not terminated and not truncated:
action_masks = None
action, _states = model.predict(obs, action_masks=action_masks)
obs, reward, terminated, truncated, info = env.step(action)
# action, _states = model.predict(obs, deterministic=True)
# obs, rewards, dones, info = vec_env.step(action)
vec_env.render("human")
time.sleep(0.2)
if __name__ == '__main__':
main()