You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
4.2 KiB
96 lines
4.2 KiB
|
|
from typing import Dict, Optional
|
|
from ray.rllib.env.env_context import EnvContext
|
|
|
|
from ray.rllib.policy import Policy
|
|
from ray.rllib.utils.typing import EnvType, PolicyID
|
|
|
|
from ray.rllib.algorithms.algorithm import Algorithm
|
|
from ray.rllib.env.base_env import BaseEnv
|
|
from ray.rllib.evaluation import RolloutWorker
|
|
from ray.rllib.evaluation.episode import Episode
|
|
from ray.rllib.evaluation.episode_v2 import EpisodeV2
|
|
|
|
from ray.rllib.algorithms.callbacks import DefaultCallbacks, make_multi_callbacks
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import tensorflow as tf
|
|
|
|
class ShieldInfoCallback(DefaultCallbacks):
|
|
def on_episode_start(self) -> None:
|
|
file_writer = tf.summary.create_file_writer(log_dir)
|
|
with file_writer.as_default():
|
|
tf.summary.text("first_text", "testing", step=0)
|
|
|
|
def on_episode_step(self) -> None:
|
|
pass
|
|
|
|
class MyCallbacks(DefaultCallbacks):
|
|
def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode, env_index, **kwargs) -> None:
|
|
with open(f"{worker.io_context.log_dir}/testing.txt", "a") as file:
|
|
file.write("first_text_from_episode_start\n")
|
|
# print(F"Epsiode started Environment: {base_env.get_sub_environments()}")
|
|
env = base_env.get_sub_environments()[0]
|
|
episode.user_data["count"] = 0
|
|
episode.user_data["ran_into_lava"] = []
|
|
episode.user_data["goals_reached"] = []
|
|
episode.user_data["ran_into_adversary"] = []
|
|
episode.hist_data["ran_into_lava"] = []
|
|
episode.hist_data["goals_reached"] = []
|
|
episode.hist_data["ran_into_adversary"] = []
|
|
|
|
# print("On episode start print")
|
|
# print(env.printGrid())
|
|
# print(worker)
|
|
# print(env.action_space.n)
|
|
# print(env.actions)
|
|
# print(env.mission)
|
|
# print(env.observation_space)
|
|
# plt.imshow(img)
|
|
# plt.show()
|
|
|
|
|
|
def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies, episode, env_index, **kwargs) -> None:
|
|
episode.user_data["count"] = episode.user_data["count"] + 1
|
|
env = base_env.get_sub_environments()[0]
|
|
# print(env.printGrid())
|
|
|
|
if hasattr(env, "adversaries"):
|
|
for adversary in env.adversaries.values():
|
|
if adversary.cur_pos[0] == env.agent_pos[0] and adversary.cur_pos[1] == env.agent_pos[1]:
|
|
print(F"Adversary ran into agent. Adversary {adversary.cur_pos}, Agent {env.agent_pos}")
|
|
# assert False
|
|
|
|
|
|
|
|
def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies, episode, env_index, **kwargs) -> None:
|
|
# print(F"Epsiode end Environment: {base_env.get_sub_environments()}")
|
|
env = base_env.get_sub_environments()[0]
|
|
agent_tile = env.grid.get(env.agent_pos[0], env.agent_pos[1])
|
|
ran_into_adversary = False
|
|
|
|
if hasattr(env, "adversaries"):
|
|
adversaries = env.adversaries.values()
|
|
for adversary in adversaries:
|
|
if adversary.cur_pos[0] == env.agent_pos[0] and adversary.cur_pos[1] == env.agent_pos[1]:
|
|
ran_into_adversary = True
|
|
break
|
|
|
|
episode.user_data["goals_reached"].append(agent_tile is not None and agent_tile.type == "goal")
|
|
episode.user_data["ran_into_lava"].append(agent_tile is not None and agent_tile.type == "lava")
|
|
episode.user_data["ran_into_adversary"].append(ran_into_adversary)
|
|
episode.custom_metrics["reached_goal"] = agent_tile is not None and agent_tile.type == "goal"
|
|
episode.custom_metrics["ran_into_lava"] = agent_tile is not None and agent_tile.type == "lava"
|
|
episode.custom_metrics["ran_into_adversary"] = ran_into_adversary
|
|
#print("On episode end print")
|
|
# print(env.printGrid())
|
|
episode.hist_data["goals_reached"] = episode.user_data["goals_reached"]
|
|
episode.hist_data["ran_into_lava"] = episode.user_data["ran_into_lava"]
|
|
episode.hist_data["ran_into_adversary"] = episode.user_data["ran_into_adversary"]
|
|
|
|
def on_evaluate_start(self, *, algorithm: Algorithm, **kwargs) -> None:
|
|
print("Evaluate Start")
|
|
|
|
def on_evaluate_end(self, *, algorithm: Algorithm, evaluation_metrics: dict, **kwargs) -> None:
|
|
print("Evaluate End")
|