You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
6.4 KiB
171 lines
6.4 KiB
import gymnasium as gym
|
|
import minigrid
|
|
|
|
import ray
|
|
from ray.tune import register_env
|
|
from ray.tune.experiment.trial import Trial
|
|
from ray import tune, air
|
|
from ray.rllib.algorithms.ppo import PPOConfig
|
|
from ray.tune.logger import UnifiedLogger
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.tune.logger import pretty_print, UnifiedLogger, CSVLogger
|
|
from ray.rllib.algorithms.algorithm import Algorithm
|
|
from ray.rllib.algorithms.callbacks import make_multi_callbacks
|
|
from ray.air import session
|
|
|
|
from torch_action_mask_model import TorchActionMaskModel
|
|
from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
|
|
from helpers import parse_arguments, create_log_dir, ShieldingConfig, test_name
|
|
from shieldhandlers import MiniGridShieldHandler, create_shield_query
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from callbacks import MyCallbacks
|
|
|
|
|
|
def shielding_env_creater(config):
|
|
name = config.get("name", "MiniGrid-LavaCrossingS9N3-v0")
|
|
framestack = config.get("framestack", 4)
|
|
args = config.get("args", None)
|
|
args.grid_path = F"{args.expname}_{args.grid_path}_{config.worker_index}.txt"
|
|
args.prism_path = F"{args.expname}_{args.prism_path}_{config.worker_index}.prism"
|
|
shielding = config.get("shielding", False)
|
|
shield_creator = MiniGridShieldHandler(grid_file=args.grid_path,
|
|
grid_to_prism_path=args.grid_to_prism_binary_path,
|
|
prism_path=args.prism_path,
|
|
formula=args.formula,
|
|
shield_value=args.shield_value,
|
|
prism_config=args.prism_config,
|
|
shield_comparision=args.shield_comparision)
|
|
|
|
prob_forward = args.prob_forward
|
|
prob_direct = args.prob_direct
|
|
prob_next = args.prob_next
|
|
|
|
env = gym.make(name, randomize_start=True,probability_forward=prob_forward, probability_direct_neighbour=prob_direct, probability_next_neighbour=prob_next)
|
|
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=shielding != ShieldingConfig.Disabled)
|
|
|
|
env = OneHotShieldingWrapper(env,
|
|
config.vector_index if hasattr(config, "vector_index") else 0,
|
|
framestack=framestack
|
|
)
|
|
|
|
|
|
return env
|
|
|
|
|
|
def register_minigrid_shielding_env(args):
|
|
env_name = "mini-grid-shielding"
|
|
register_env(env_name, shielding_env_creater)
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"shielding_model",
|
|
TorchActionMaskModel
|
|
)
|
|
|
|
def trial_name_creator(trial : Trial):
|
|
return "trial"
|
|
|
|
|
|
def ppo(args):
|
|
register_minigrid_shielding_env(args)
|
|
logdir = args.log_dir
|
|
|
|
config = (PPOConfig()
|
|
.rollouts(num_rollout_workers=args.workers)
|
|
.resources(num_gpus=args.num_gpus)
|
|
.environment( env="mini-grid-shielding",
|
|
env_config={"name": args.env,
|
|
"args": args,
|
|
"shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training,
|
|
},)
|
|
.framework("torch")
|
|
.callbacks(MyCallbacks)
|
|
.evaluation(evaluation_config={
|
|
"evaluation_interval": 1,
|
|
"evaluation_duration": 10,
|
|
"evaluation_num_workers":1,
|
|
"env": "mini-grid-shielding",
|
|
"env_config": {"name": args.env,
|
|
"args": args,
|
|
"shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Evaluation}})
|
|
.rl_module(_enable_rl_module_api = False)
|
|
.debugging(logger_config={
|
|
"type": UnifiedLogger,
|
|
"logdir": logdir
|
|
})
|
|
.training(_enable_learner_api=False ,model={
|
|
"custom_model": "shielding_model"
|
|
}))
|
|
|
|
tuner = tune.Tuner("PPO",
|
|
tune_config=tune.TuneConfig(
|
|
metric="episode_reward_mean",
|
|
mode="max",
|
|
num_samples=1,
|
|
trial_name_creator=trial_name_creator,
|
|
|
|
),
|
|
run_config=air.RunConfig(
|
|
stop = {"episode_reward_mean": 94,
|
|
"timesteps_total": args.steps,},
|
|
checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True,
|
|
num_to_keep=1,
|
|
checkpoint_score_attribute="episode_reward_mean",
|
|
),
|
|
|
|
storage_path=F"{logdir}",
|
|
name=test_name(args),
|
|
|
|
|
|
),
|
|
param_space=config,)
|
|
|
|
results = tuner.fit()
|
|
best_result = results.get_best_result()
|
|
|
|
import pprint
|
|
|
|
metrics_to_print = [
|
|
"episode_reward_mean",
|
|
"episode_reward_max",
|
|
"episode_reward_min",
|
|
"episode_len_mean",
|
|
]
|
|
pprint.pprint({k: v for k, v in best_result.metrics.items() if k in metrics_to_print})
|
|
|
|
# algo = Algorithm.from_checkpoint(best_result.checkpoint)
|
|
|
|
|
|
# eval_log_dir = F"{logdir}-eval"
|
|
|
|
# writer = SummaryWriter(log_dir=eval_log_dir)
|
|
# csv_logger = CSVLogger(config=config, logdir=eval_log_dir)
|
|
|
|
|
|
# for i in range(args.evaluations):
|
|
# eval_result = algo.evaluate()
|
|
# print(pretty_print(eval_result))
|
|
# print(eval_result)
|
|
# # logger.on_result(eval_result)
|
|
|
|
# csv_logger.on_result(eval_result)
|
|
|
|
# evaluation = eval_result['evaluation']
|
|
# epsiode_reward_mean = evaluation['episode_reward_mean']
|
|
# episode_len_mean = evaluation['episode_len_mean']
|
|
# print(epsiode_reward_mean)
|
|
# writer.add_scalar("evaluation/episode_reward_mean", epsiode_reward_mean, i)
|
|
# writer.add_scalar("evaluation/episode_len_mean", episode_len_mean, i)
|
|
|
|
|
|
def main():
|
|
ray.init(num_cpus=3)
|
|
import argparse
|
|
args = parse_arguments(argparse)
|
|
|
|
ppo(args)
|
|
|
|
ray.shutdown()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|