You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

128 lines
4.0 KiB

import gymnasium as gym
import minigrid
from ray.tune import register_env
from ray.rllib.algorithms.ppo import PPOConfig
from ray.tune.logger import pretty_print, UnifiedLogger, CSVLogger
from ray.rllib.models import ModelCatalog
from torch_action_mask_model import TorchActionMaskModel
from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
from helpers import parse_arguments, create_log_dir, ShieldingConfig
from shieldhandlers import MiniGridShieldHandler, create_shield_query
from callbacks import MyCallbacks
from torch.utils.tensorboard import SummaryWriter
def shielding_env_creater(config):
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
framestack = config.get("framestack", 4)
args = config.get("args", None)
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt"
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism"
shielding = config.get("shielding", False)
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula)
env = gym.make(name)
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=shielding)
env = OneHotShieldingWrapper(env,
config.vector_index if hasattr(config, "vector_index") else 0,
framestack=framestack
)
return env
def register_minigrid_shielding_env(args):
env_name = "mini-grid-shielding"
register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model(
"shielding_model",
TorchActionMaskModel
)
def ppo(args):
register_minigrid_shielding_env(args)
config = (PPOConfig()
.rollouts(num_rollout_workers=args.workers)
.resources(num_gpus=0)
.environment( env="mini-grid-shielding",
env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training})
.framework("torch")
.callbacks(MyCallbacks)
.evaluation(evaluation_config={
"evaluation_interval": 1,
"evaluation_duration": 10,
"evaluation_num_workers":1,
"env": "mini-grid-shielding",
"env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Evaluation}})
.rl_module(_enable_rl_module_api = False)
.debugging(logger_config={
"type": UnifiedLogger,
"logdir": create_log_dir(args)
})
.training(_enable_learner_api=False ,model={
"custom_model": "shielding_model"
}))
algo =(
config.build()
)
evaluations = args.evaluations
for i in range(evaluations):
algo.train()
if i % 5 == 0:
algo.save()
eval_log_dir = F"{create_log_dir(args)}-eval"
writer = SummaryWriter(log_dir=eval_log_dir)
csv_logger = CSVLogger(config=config, logdir=eval_log_dir)
for i in range(evaluations):
eval_result = algo.evaluate()
print(pretty_print(eval_result))
print(eval_result)
# logger.on_result(eval_result)
csv_logger.on_result(eval_result)
evaluation = eval_result['evaluation']
epsiode_reward_mean = evaluation['episode_reward_mean']
episode_len_mean = evaluation['episode_len_mean']
print(epsiode_reward_mean)
writer.add_scalar("evaluation/episode_reward_mean", epsiode_reward_mean, i)
writer.add_scalar("evaluation/episode_len_mean", episode_len_mean, i)
writer.close()
def main():
import argparse
args = parse_arguments(argparse)
ppo(args)
if __name__ == '__main__':
main()