You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
5.1 KiB
151 lines
5.1 KiB
import gymnasium as gym
|
|
import minigrid
|
|
|
|
from ray.tune import register_env
|
|
from ray.rllib.algorithms.ppo import PPOConfig
|
|
from ray.rllib.algorithms.dqn.dqn import DQNConfig
|
|
from ray.tune.logger import pretty_print
|
|
from ray.rllib.models import ModelCatalog
|
|
|
|
|
|
from torch_action_mask_model import TorchActionMaskModel
|
|
from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
|
|
from helpers import parse_arguments, create_log_dir, ShieldingConfig
|
|
from shieldhandlers import MiniGridShieldHandler, create_shield_query
|
|
from callbacks import MyCallbacks
|
|
|
|
from ray.tune.logger import TBXLogger
|
|
|
|
def shielding_env_creater(config):
|
|
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
|
|
framestack = config.get("framestack", 4)
|
|
args = config.get("args", None)
|
|
args.grid_path = F"{args.grid_path}_{config.worker_index}_{args.prism_config}.txt"
|
|
args.prism_path = F"{args.prism_path}_{config.worker_index}_{args.prism_config}.prism"
|
|
|
|
prob_forward = args.prob_forward
|
|
prob_direct = args.prob_direct
|
|
prob_next = args.prob_next
|
|
|
|
shield_creator = MiniGridShieldHandler(args.grid_path,
|
|
args.grid_to_prism_binary_path,
|
|
args.prism_path,
|
|
args.formula,
|
|
args.shield_value,
|
|
args.prism_config,
|
|
shield_comparision=args.shield_comparision)
|
|
|
|
env = gym.make(name, randomize_start=True,probability_forward=prob_forward, probability_direct_neighbour=prob_direct, probability_next_neighbour=prob_next)
|
|
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator,
|
|
shield_query_creator=create_shield_query,
|
|
mask_actions=args.shielding != ShieldingConfig.Disabled,
|
|
create_shield_at_reset=args.shield_creation_at_reset)
|
|
# env = minigrid.wrappers.ImgObsWrapper(env)
|
|
# env = ImgObsWrapper(env)
|
|
env = OneHotShieldingWrapper(env,
|
|
config.vector_index if hasattr(config, "vector_index") else 0,
|
|
framestack=framestack
|
|
)
|
|
|
|
|
|
return env
|
|
|
|
|
|
|
|
def register_minigrid_shielding_env(args):
|
|
env_name = "mini-grid-shielding"
|
|
register_env(env_name, shielding_env_creater)
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"shielding_model",
|
|
TorchActionMaskModel
|
|
)
|
|
|
|
|
|
def ppo(args):
|
|
train_batch_size = 4000
|
|
register_minigrid_shielding_env(args)
|
|
|
|
config = (PPOConfig()
|
|
.rollouts(num_rollout_workers=args.workers)
|
|
.resources(num_gpus=0)
|
|
.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training})
|
|
.framework("torch")
|
|
.callbacks(MyCallbacks)
|
|
.rl_module(_enable_rl_module_api = False)
|
|
.debugging(logger_config={
|
|
"type": TBXLogger,
|
|
"logdir": create_log_dir(args)
|
|
})
|
|
# .exploration(exploration_config={"exploration_fraction": 0.1})
|
|
.training(_enable_learner_api=False ,
|
|
model={"custom_model": "shielding_model"},
|
|
train_batch_size=train_batch_size))
|
|
# config.entropy_coeff = 0.05
|
|
algo =(
|
|
config.build()
|
|
)
|
|
|
|
|
|
iterations = int((args.steps / train_batch_size)) + 1
|
|
for i in range(iterations):
|
|
result = algo.train()
|
|
print(pretty_print(result))
|
|
|
|
if i % 5 == 0:
|
|
checkpoint_dir = algo.save()
|
|
print(f"Checkpoint saved in directory {checkpoint_dir}")
|
|
|
|
algo.save()
|
|
|
|
|
|
def dqn(args):
|
|
train_batch_size = 4000
|
|
register_minigrid_shielding_env(args)
|
|
|
|
|
|
config = DQNConfig()
|
|
config = config.resources(num_gpus=0)
|
|
config = config.rollouts(num_rollout_workers=args.workers)
|
|
config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args })
|
|
config = config.framework("torch")
|
|
config = config.callbacks(MyCallbacks)
|
|
config = config.rl_module(_enable_rl_module_api = False)
|
|
config = config.debugging(logger_config={
|
|
"type": TBXLogger,
|
|
"logdir": create_log_dir(args)
|
|
})
|
|
config = config.training(hiddens=[], dueling=False, train_batch_size=train_batch_size, model={
|
|
"custom_model": "shielding_model"
|
|
})
|
|
|
|
algo = (
|
|
config.build()
|
|
)
|
|
|
|
iterations = int((args.steps / train_batch_size)) + 1
|
|
for i in range(iterations):
|
|
result = algo.train()
|
|
print(pretty_print(result))
|
|
|
|
if i % 5 == 0:
|
|
print("Saving checkpoint")
|
|
checkpoint_dir = algo.save()
|
|
print(f"Checkpoint saved in directory {checkpoint_dir}")
|
|
|
|
|
|
def main():
|
|
import argparse
|
|
args = parse_arguments(argparse)
|
|
|
|
if args.algorithm == "PPO":
|
|
ppo(args)
|
|
elif args.algorithm == "DQN":
|
|
dqn(args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|