You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
5.8 KiB
171 lines
5.8 KiB
import minigrid
|
|
from minigrid.core.actions import Actions
|
|
import gymnasium as gym
|
|
|
|
from datetime import datetime
|
|
|
|
import stormpy
|
|
import stormpy.core
|
|
import stormpy.simulator
|
|
|
|
import stormpy.shields
|
|
import stormpy.logic
|
|
|
|
import stormpy.examples
|
|
import stormpy.examples.files
|
|
|
|
import os
|
|
|
|
|
|
def extract_keys(env):
|
|
env.reset()
|
|
keys = []
|
|
print(env.grid)
|
|
for j in range(env.grid.height):
|
|
for i in range(env.grid.width):
|
|
obj = env.grid.get(i,j)
|
|
|
|
if obj and obj.type == "key":
|
|
keys.append(obj.color)
|
|
|
|
return keys
|
|
|
|
def create_log_dir(args):
|
|
return F"{args.log_dir}{datetime.now()}-{args.algorithm}-masking:{not args.no_masking}-env:{args.env}"
|
|
|
|
|
|
def get_action_index_mapping(actions):
|
|
for action_str in actions:
|
|
if "left" in action_str:
|
|
return Actions.left
|
|
elif "right" in action_str:
|
|
return Actions.right
|
|
elif "east" in action_str:
|
|
return Actions.forward
|
|
elif "south" in action_str:
|
|
return Actions.forward
|
|
elif "west" in action_str:
|
|
return Actions.forward
|
|
elif "north" in action_str:
|
|
return Actions.forward
|
|
elif "pickup" in action_str:
|
|
return Actions.pickup
|
|
elif "done" in action_str:
|
|
return Actions.done
|
|
|
|
|
|
raise ValueError(F"Action string {action_str} not supported")
|
|
|
|
|
|
|
|
def parse_arguments(argparse):
|
|
parser = argparse.ArgumentParser()
|
|
# parser.add_argument("--env", help="gym environment to load", default="MiniGrid-Empty-8x8-v0")
|
|
parser.add_argument("--env",
|
|
help="gym environment to load",
|
|
default="MiniGrid-LavaCrossingS9N1-v0",
|
|
choices=[
|
|
"MiniGrid-LavaCrossingS9N1-v0",
|
|
"MiniGrid-DoorKey-8x8-v0",
|
|
"MiniGrid-LockedRoom-v0",
|
|
"MiniGrid-FourRooms-v0",
|
|
"MiniGrid-LavaGapS7-v0",
|
|
"MiniGrid-SimpleCrossingS9N3-v0",
|
|
"MiniGrid-DoorKey-16x16-v0",
|
|
"MiniGrid-Empty-Random-6x6-v0",
|
|
])
|
|
|
|
# parser.add_argument("--seed", type=int, help="seed for environment", default=None)
|
|
parser.add_argument("--grid_to_prism_path", default="./main")
|
|
parser.add_argument("--grid_path", default="Grid.txt")
|
|
parser.add_argument("--prism_path", default="Grid.PRISM")
|
|
parser.add_argument("--no_masking", default=False)
|
|
parser.add_argument("--algorithm", default="ppo", choices=["ppo", "dqn"])
|
|
parser.add_argument("--log_dir", default="../log_results/")
|
|
parser.add_argument("--iterations", type=int, default=30 )
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
def create_environment(args):
|
|
env_id= args.env
|
|
env = gym.make(env_id)
|
|
env.reset()
|
|
return env
|
|
|
|
|
|
def export_grid_to_text(env, grid_file):
|
|
f = open(grid_file, "w")
|
|
# print(env)
|
|
f.write(env.printGrid(init=True))
|
|
f.close()
|
|
|
|
|
|
def create_shield(grid_to_prism_path, grid_file, prism_path):
|
|
os.system(F"{grid_to_prism_path} -v 'agent' -i {grid_file} -o {prism_path}")
|
|
|
|
f = open(prism_path, "a")
|
|
f.write("label \"AgentIsInLava\" = AgentIsInLava;")
|
|
f.close()
|
|
|
|
|
|
program = stormpy.parse_prism_program(prism_path)
|
|
# formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
|
|
formula_str = "Pmax=? [G ! \"AgentIsInGoalAndNotDone\"]"
|
|
# shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY,
|
|
# stormpy.logic.ShieldComparison.ABSOLUTE, 0.9)
|
|
|
|
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.1)
|
|
# shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9)
|
|
|
|
formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
|
|
options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
|
|
options.set_build_state_valuations(True)
|
|
options.set_build_choice_labels(True)
|
|
options.set_build_all_labels()
|
|
model = stormpy.build_sparse_model_with_options(program, options)
|
|
|
|
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
|
|
|
|
assert result.has_scheduler
|
|
assert result.has_shield
|
|
shield = result.shield
|
|
|
|
action_dictionary = {}
|
|
shield_scheduler = shield.construct()
|
|
|
|
for stateID in model.states:
|
|
choice = shield_scheduler.get_choice(stateID)
|
|
choices = choice.choice_map
|
|
state_valuation = model.state_valuations.get_string(stateID)
|
|
|
|
actions_to_be_executed = [(choice[1] ,model.choice_labeling.get_labels_of_choice(model.get_choice_index(stateID, choice[1]))) for choice in choices]
|
|
|
|
action_dictionary[state_valuation] = actions_to_be_executed
|
|
|
|
stormpy.shields.export_shield(model, shield, "Grid.shield")
|
|
return action_dictionary
|
|
|
|
|
|
def create_shield_dict(args):
|
|
env = create_environment(args)
|
|
# print(env.printGrid(init=False))
|
|
|
|
grid_file = args.grid_path
|
|
grid_to_prism_path = args.grid_to_prism_path
|
|
export_grid_to_text(env, grid_file)
|
|
|
|
prism_path = args.prism_path
|
|
shield_dict = create_shield(grid_to_prism_path ,grid_file, prism_path)
|
|
#shield_dict = {state.id : shield.get_choice(state).choice_map for state in model.states}
|
|
|
|
#print(F"Shield dictionary {shield_dict}")
|
|
# for state_id in model.states:
|
|
# choices = shield.get_choice(state_id)
|
|
# print(F"Allowed choices in state {state_id}, are {choices.choice_map} ")
|
|
|
|
return shield_dict
|
|
|