You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

171 lines
5.8 KiB

import minigrid
from minigrid.core.actions import Actions
import gymnasium as gym
from datetime import datetime
import stormpy
import stormpy.core
import stormpy.simulator
import stormpy.shields
import stormpy.logic
import stormpy.examples
import stormpy.examples.files
import os
def extract_keys(env):
env.reset()
keys = []
print(env.grid)
for j in range(env.grid.height):
for i in range(env.grid.width):
obj = env.grid.get(i,j)
if obj and obj.type == "key":
keys.append(obj.color)
return keys
def create_log_dir(args):
return F"{args.log_dir}{datetime.now()}-{args.algorithm}-masking:{not args.no_masking}-env:{args.env}"
def get_action_index_mapping(actions):
for action_str in actions:
if "left" in action_str:
return Actions.left
elif "right" in action_str:
return Actions.right
elif "east" in action_str:
return Actions.forward
elif "south" in action_str:
return Actions.forward
elif "west" in action_str:
return Actions.forward
elif "north" in action_str:
return Actions.forward
elif "pickup" in action_str:
return Actions.pickup
elif "done" in action_str:
return Actions.done
raise ValueError(F"Action string {action_str} not supported")
def parse_arguments(argparse):
parser = argparse.ArgumentParser()
# parser.add_argument("--env", help="gym environment to load", default="MiniGrid-Empty-8x8-v0")
parser.add_argument("--env",
help="gym environment to load",
default="MiniGrid-LavaCrossingS9N1-v0",
choices=[
"MiniGrid-LavaCrossingS9N1-v0",
"MiniGrid-DoorKey-8x8-v0",
"MiniGrid-LockedRoom-v0",
"MiniGrid-FourRooms-v0",
"MiniGrid-LavaGapS7-v0",
"MiniGrid-SimpleCrossingS9N3-v0",
"MiniGrid-DoorKey-16x16-v0",
"MiniGrid-Empty-Random-6x6-v0",
])
# parser.add_argument("--seed", type=int, help="seed for environment", default=None)
parser.add_argument("--grid_to_prism_path", default="./main")
parser.add_argument("--grid_path", default="Grid.txt")
parser.add_argument("--prism_path", default="Grid.PRISM")
parser.add_argument("--no_masking", default=False)
parser.add_argument("--algorithm", default="ppo", choices=["ppo", "dqn"])
parser.add_argument("--log_dir", default="../log_results/")
parser.add_argument("--iterations", type=int, default=30 )
args = parser.parse_args()
return args
def create_environment(args):
env_id= args.env
env = gym.make(env_id)
env.reset()
return env
def export_grid_to_text(env, grid_file):
f = open(grid_file, "w")
# print(env)
f.write(env.printGrid(init=True))
f.close()
def create_shield(grid_to_prism_path, grid_file, prism_path):
os.system(F"{grid_to_prism_path} -v 'agent' -i {grid_file} -o {prism_path}")
f = open(prism_path, "a")
f.write("label \"AgentIsInLava\" = AgentIsInLava;")
f.close()
program = stormpy.parse_prism_program(prism_path)
# formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
formula_str = "Pmax=? [G ! \"AgentIsInGoalAndNotDone\"]"
# shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY,
# stormpy.logic.ShieldComparison.ABSOLUTE, 0.9)
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.1)
# shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9)
formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
options.set_build_state_valuations(True)
options.set_build_choice_labels(True)
options.set_build_all_labels()
model = stormpy.build_sparse_model_with_options(program, options)
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
assert result.has_scheduler
assert result.has_shield
shield = result.shield
action_dictionary = {}
shield_scheduler = shield.construct()
for stateID in model.states:
choice = shield_scheduler.get_choice(stateID)
choices = choice.choice_map
state_valuation = model.state_valuations.get_string(stateID)
actions_to_be_executed = [(choice[1] ,model.choice_labeling.get_labels_of_choice(model.get_choice_index(stateID, choice[1]))) for choice in choices]
action_dictionary[state_valuation] = actions_to_be_executed
stormpy.shields.export_shield(model, shield, "Grid.shield")
return action_dictionary
def create_shield_dict(args):
env = create_environment(args)
# print(env.printGrid(init=False))
grid_file = args.grid_path
grid_to_prism_path = args.grid_to_prism_path
export_grid_to_text(env, grid_file)
prism_path = args.prism_path
shield_dict = create_shield(grid_to_prism_path ,grid_file, prism_path)
#shield_dict = {state.id : shield.get_choice(state).choice_map for state in model.states}
#print(F"Shield dictionary {shield_dict}")
# for state_id in model.states:
# choices = shield.get_choice(state_id)
# print(F"Allowed choices in state {state_id}, are {choices.choice_map} ")
return shield_dict