You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

118 lines
3.9 KiB

import gymnasium as gym
import numpy as np
import random
from moviepy.editor import ImageSequenceClip
from utils import MiniGridShieldHandler, common_parser
from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback
from stable_baselines3.common.logger import Image
class MiniGridSbShieldingWrapper(gym.core.Wrapper):
def __init__(self,
env,
shield_handler : MiniGridShieldHandler,
create_shield_at_reset = False,
):
super().__init__(env)
self.shield_handler = shield_handler
self.create_shield_at_reset = create_shield_at_reset
shield = self.shield_handler.create_shield(env=self.env)
self.shield = shield
def create_action_mask(self):
try:
return self.shield[self.env.get_symbolic_state()]
except:
return [1.0] * 3 + [1.0] * 4
def reset(self, *, seed=None, options=None):
obs, infos = self.env.reset(seed=seed, options=options)
if self.create_shield_at_reset:
shield = self.shield_handler.create_shield(env=self.env)
self.shield = shield
return obs, infos
def step(self, action):
obs, rew, done, truncated, info = self.env.step(action)
return obs, rew, done, truncated, info
def parse_sb3_arguments():
parser = common_parser()
args = parser.parse_args()
return args
class ImageRecorderCallback(BaseCallback):
def __init__(self, eval_env, render_freq, n_eval_episodes, evaluation_method, log_dir, deterministic=True, verbose=0):
super().__init__(verbose)
self._eval_env = eval_env
self._render_freq = render_freq
self._n_eval_episodes = n_eval_episodes
self._deterministic = deterministic
self._evaluation_method = evaluation_method
self._log_dir = log_dir
def _on_training_start(self):
image = self.training_env.render(mode="rgb_array")
self.logger.record("trajectory/image", Image(image, "HWC"), exclude=("stdout", "log", "json", "csv"))
def _on_step(self) -> bool:
#if self.n_calls % self._render_freq == 0:
# self.record_video()
return True
def _on_training_end(self) -> None:
self.record_video()
def record_video(self) -> bool:
screens = []
def grab_screens(_locals, _globals) -> None:
"""
Renders the environment in its current state, recording the screen in the captured `screens` list
:param _locals: A dictionary containing all local variables of the callback's scope
:param _globals: A dictionary containing all global variables of the callback's scope
"""
screen = self._eval_env.render()
screens.append(screen)
self._evaluation_method(
self.model,
self._eval_env,
callback=grab_screens,
n_eval_episodes=self._n_eval_episodes,
deterministic=self._deterministic,
)
clip = ImageSequenceClip(list(screens), fps=3)
clip.write_gif(f"{self._log_dir}/{self.n_calls}.gif", fps=3)
return True
class InfoCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard.
"""
def __init__(self, verbose=0):
super().__init__(verbose)
self.sum_goal = 0
self.sum_lava = 0
self.sum_collisions = 0
def _on_step(self) -> bool:
infos = self.locals["infos"][0]
if infos["reached_goal"]:
self.sum_goal += 1
if infos["ran_into_lava"]:
self.sum_lava += 1
self.logger.record("info/sum_reached_goal", self.sum_goal)
self.logger.record("info/sum_ran_into_lava", self.sum_lava)
if "collision" in infos:
if infos["collision"]:
self.sum_collisions += 1
self.logger.record("info/sum_collision", self.sum_collisions)
return True