56 lines
1.6 KiB

import stormpy
import stormpy.core
import stormpy.examples
import stormpy.examples.files
import stormpy.info
import pycarl
def example_building_models_02():
import stormpy.pars
if stormpy.info.storm_ratfunc_use_cln():
import pycarl.cln as pc
else:
import pycarl.gmp as pc
def make_factorized_rf(var, cache):
num = pc.FactorizedPolynomial(pc.Polynomial(var), cache)
denom = pc.FactorizedPolynomial(pc.Rational(1))
return pc.FactorizedRationalFunction(num, denom)
# And the parametric
path = stormpy.examples.files.drn_pdtmc_die
model = stormpy.build_parametric_model_from_drn(path)
parameters = model.collect_probability_parameters()
bar_parameters = dict()
for p in parameters:
# Ensure that variables with that name are not recognized by pycarl.
assert pycarl.variable_with_name(p.name + "_bar").is_no_variable
bar_parameters[p] = pycarl.Variable(p.name + "_bar")
substitutions = dict([[pc.Polynomial(1) - p, bar_parameters[p]] for p in parameters])
print(substitutions)
matrix = model.transition_matrix
for e in matrix:
val = e.value()
if val.is_constant():
continue
val_pol = val.numerator.polynomial()
cache = val.numerator.cache()
for sub, repl in substitutions.items():
if val_pol - sub == 0:
print("Found substitution")
e.set_value(make_factorized_rf(repl, cache))
break # Assume only one substitution per entry
print(matrix)
if __name__ == '__main__':
example_building_models_02()