You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

220 lines
8.5 KiB

import sys
if sys.version_info[0] == 2:
raise ImportError('Python 2.x is not supported for stormpy.')
from . import core
from .core import *
from . import storage
from .storage import *
from ._config import *
from .logic import *
from .exceptions import *
from pycarl import Variable # needed for building parametric models
__version__ = "unknown"
try:
from _version import __version__
except ImportError:
# We're running in a tree that doesn't have a _version.py, so we don't know what our version is.
pass
core._set_up("")
def build_model(symbolic_description, properties=None):
"""
Build a model from a symbolic description.
:param symbolic_description: Symbolic model description to translate into a model.
:param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved.
:return: Model in sparse representation.
:rtype: SparseDtmc or SparseMdp
"""
if not symbolic_description.undefined_constants_are_graph_preserving:
raise StormError("Program still contains undefined constants")
if properties:
formulae = [prop.raw_formula for prop in properties]
intermediate = core._build_sparse_model_from_prism_program(symbolic_description, formulae)
else:
intermediate = core._build_sparse_model_from_prism_program(symbolic_description)
assert not intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_dtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_mdp()
elif intermediate.model_type == ModelType.CTMC:
return intermediate._as_ctmc()
elif intermediate.model_type == ModelType.MA:
return intermediate._as_ma()
else:
raise StormError("Not supported non-parametric model constructed")
def build_parametric_model(symbolic_description, properties=None):
"""
Build a parametric model from a symbolic description.
:param symbolic_description: Symbolic model description to translate into a model.
:param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved.
:return: Parametric model in sparse representation.
:rtype: SparseParametricDtmc or SparseParametricMdp
"""
if not symbolic_description.undefined_constants_are_graph_preserving:
raise StormError("Program still contains undefined constants")
if properties:
formulae = [prop.raw_formula for prop in properties]
else:
formulae = []
intermediate = core._build_sparse_parametric_model_from_prism_program(symbolic_description, formulae)
assert intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_pdtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_pmdp()
elif intermediate.model_type == ModelType.CTMC:
return intermediate._as_pctmc()
elif intermediate.model_type == ModelType.MA:
return intermediate._as_pma()
else:
raise StormError("Not supported parametric model constructed")
def build_model_from_drn(file):
"""
Build a model from the explicit DRN representation.
:param String file: DRN file containing the model.
:return: Model in sparse representation.
:rtype: SparseDtmc or SparseMdp or SparseCTMC or SparseMA
"""
intermediate = core._build_sparse_model_from_drn(file)
assert not intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_dtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_mdp()
elif intermediate.model_type == ModelType.CTMC:
return intermediate._as_ctmc()
elif intermediate.model_type == ModelType.MA:
return intermediate._as_ma()
else:
raise StormError("Not supported non-parametric model constructed")
def build_parametric_model_from_drn(file):
"""
Build a parametric model from the explicit DRN representation.
:param String file: DRN file containing the model.
:return: Parametric model in sparse representation.
:rtype: SparseParametricDtmc or SparseParametricMdp or SparseParametricCTMC or SparseParametricMA
"""
intermediate = core._build_sparse_parametric_model_from_drn(file)
assert intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_pdtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_pmdp()
elif intermediate.model_type == ModelType.CTMC:
return intermediate._as_pctmc()
elif intermediate.model_type == ModelType.MA:
return intermediate._as_pma()
else:
raise StormError("Not supported parametric model constructed")
def perform_bisimulation(model, properties, bisimulation_type):
"""
Perform bisimulation on model.
:param model: Model.
:param properties: Properties to preserve during bisimulation.
:param bisimulation_type: Type of bisimulation (weak or strong).
:return: Model after bisimulation.
"""
formulae = [prop.raw_formula for prop in properties]
if model.supports_parameters:
return core._perform_parametric_bisimulation(model, formulae, bisimulation_type)
else:
return core._perform_bisimulation(model, formulae, bisimulation_type)
def model_checking(model, property, only_initial_states=False, extract_scheduler=False):
"""
Perform model checking on model for property.
:param model: Model.
:param property: Property to check for.
:param only_initial_states: If True, only results for initial states are computed, otherwise for all states.
:param extract_scheduler: If True, try to extract a scheduler
:return: Model checking result.
:rtype: CheckResult
"""
if isinstance(property, Property):
formula = property.raw_formula
else:
formula = property
if model.supports_parameters:
task = core.ParametricCheckTask(formula, only_initial_states)
task.set_produce_schedulers(extract_scheduler)
return core._parametric_model_checking_sparse_engine(model, task)
else:
task = core.CheckTask(formula, only_initial_states)
task.set_produce_schedulers(extract_scheduler)
return core._model_checking_sparse_engine(model, task)
def prob01min_states(model, eventually_formula):
assert type(eventually_formula) == logic.EventuallyFormula
labelform = eventually_formula.subformula
labelprop = core.Property("label-prop", labelform)
phiStates = BitVector(model.nr_states, True)
psiStates = model_checking(model, labelprop).get_truth_values()
return compute_prob01min_states(model, phiStates, psiStates)
def prob01max_states(model, eventually_formula):
assert type(eventually_formula) == logic.EventuallyFormula
labelform = eventually_formula.subformula
labelprop = core.Property("label-prop", labelform)
phiStates = BitVector(model.nr_states, True)
psiStates = model_checking(model, labelprop).get_truth_values()
return compute_prob01min_states(model, phiStates, psiStates)
def compute_prob01_states(model, phi_states, psi_states):
"""
Compute prob01 states for properties of the form phi_states until psi_states
:param SparseDTMC model:
:param BitVector phi_states:
:param BitVector psi_states: Target states
"""
if model.model_type != ModelType.DTMC:
raise StormError("Prob 01 is only defined for DTMCs -- model must be a DTMC")
if model.supports_parameters:
return core._compute_prob01states_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_double(model, phi_states, psi_states)
def compute_prob01min_states(model, phi_states, psi_states):
if model.model_type == ModelType.DTMC:
return compute_prob01_states(model, phi_states, psi_states)
if model.supports_parameters:
return core._compute_prob01states_min_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_min_double(model, phi_states, psi_states)
def compute_prob01max_states(model, phi_states, psi_states):
if model.model_type == ModelType.DTMC:
return compute_prob01_states(model, phi_states, psi_states)
if model.supports_parameters:
return core._compute_prob01states_max_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_max_double(model, phi_states, psi_states)