You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							121 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							121 lines
						
					
					
						
							3.8 KiB
						
					
					
				
								{
							 | 
						|
								 "cells": [
							 | 
						|
								  {
							 | 
						|
								   "cell_type": "markdown",
							 | 
						|
								   "metadata": {},
							 | 
						|
								   "source": [
							 | 
						|
								    "## Example how to combine shielding with rllibs dqn algorithm."
							 | 
						|
								   ]
							 | 
						|
								  },
							 | 
						|
								  {
							 | 
						|
								   "cell_type": "code",
							 | 
						|
								   "execution_count": null,
							 | 
						|
								   "metadata": {},
							 | 
						|
								   "outputs": [],
							 | 
						|
								   "source": [
							 | 
						|
								    "import gymnasium as gym\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "import minigrid\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "from ray import tune, air\n",
							 | 
						|
								    "from ray.tune import register_env\n",
							 | 
						|
								    "from ray.rllib.algorithms.dqn.dqn import DQNConfig\n",
							 | 
						|
								    "from ray.tune.logger import pretty_print\n",
							 | 
						|
								    "from ray.rllib.models import ModelCatalog\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "from torch_action_mask_model import TorchActionMaskModel\n",
							 | 
						|
								    "from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper\n",
							 | 
						|
								    "from shieldhandlers import MiniGridShieldHandler, create_shield_query\n",
							 | 
						|
								    "  "
							 | 
						|
								   ]
							 | 
						|
								  },
							 | 
						|
								  {
							 | 
						|
								   "cell_type": "code",
							 | 
						|
								   "execution_count": null,
							 | 
						|
								   "metadata": {},
							 | 
						|
								   "outputs": [],
							 | 
						|
								   "source": [
							 | 
						|
								    "def shielding_env_creater(config):\n",
							 | 
						|
								    "    name = config.get(\"name\", \"MiniGrid-LavaCrossingS9N1-v0\")\n",
							 | 
						|
								    "    framestack = config.get(\"framestack\", 4)\n",
							 | 
						|
								    "    \n",
							 | 
						|
								    "    shield_creator = MiniGridShieldHandler(\"grid.txt\", \"./main\", \"grid.prism\", \"Pmax=? [G !\\\"AgentIsInLavaAndNotDone\\\"]\")\n",
							 | 
						|
								    "    \n",
							 | 
						|
								    "    env = gym.make(name)\n",
							 | 
						|
								    "    env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=True)\n",
							 | 
						|
								    "    env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, \"vector_index\") else 0,\n",
							 | 
						|
								    "                                 framestack=framestack)\n",
							 | 
						|
								    "    \n",
							 | 
						|
								    "    return env\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "def register_minigrid_shielding_env():\n",
							 | 
						|
								    "    env_name = \"mini-grid-shielding\"\n",
							 | 
						|
								    "    register_env(env_name, shielding_env_creater)\n",
							 | 
						|
								    "    ModelCatalog.register_custom_model(\n",
							 | 
						|
								    "        \"shielding_model\", \n",
							 | 
						|
								    "        TorchActionMaskModel)"
							 | 
						|
								   ]
							 | 
						|
								  },
							 | 
						|
								  {
							 | 
						|
								   "cell_type": "code",
							 | 
						|
								   "execution_count": null,
							 | 
						|
								   "metadata": {},
							 | 
						|
								   "outputs": [],
							 | 
						|
								   "source": [
							 | 
						|
								    "register_minigrid_shielding_env()\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "    \n",
							 | 
						|
								    "config = DQNConfig()\n",
							 | 
						|
								    "config = config.resources(num_gpus=0)\n",
							 | 
						|
								    "config = config.rollouts(num_rollout_workers=1)\n",
							 | 
						|
								    "config = config.environment(env=\"mini-grid-shielding\", env_config={\"name\": \"MiniGrid-LavaCrossingS9N1-v0\" })\n",
							 | 
						|
								    "config = config.framework(\"torch\")\n",
							 | 
						|
								    "config = config.rl_module(_enable_rl_module_api = False)\n",
							 | 
						|
								    "config = config.training(hiddens=[], dueling=False, model={    \n",
							 | 
						|
								    "        \"custom_model\": \"shielding_model\"\n",
							 | 
						|
								    "})\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "tuner = tune.Tuner(\"DQN\",\n",
							 | 
						|
								    "                tune_config=tune.TuneConfig(\n",
							 | 
						|
								    "                    metric=\"episode_reward_mean\",\n",
							 | 
						|
								    "                    mode=\"max\",\n",
							 | 
						|
								    "                    num_samples=1,\n",
							 | 
						|
								    "                    \n",
							 | 
						|
								    "                ),\n",
							 | 
						|
								    "                run_config=air.RunConfig(\n",
							 | 
						|
								    "                        stop = {\"episode_reward_mean\": 94,\n",
							 | 
						|
								    "                                \"timesteps_total\": 12000,\n",
							 | 
						|
								    "                                \"training_iteration\": 12}, \n",
							 | 
						|
								    "                        checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ),\n",
							 | 
						|
								    "                ),\n",
							 | 
						|
								    "                param_space=config,)\n",
							 | 
						|
								    "\n",
							 | 
						|
								    "tuner.fit()\n"
							 | 
						|
								   ]
							 | 
						|
								  }
							 | 
						|
								 ],
							 | 
						|
								 "metadata": {
							 | 
						|
								  "kernelspec": {
							 | 
						|
								   "display_name": "env",
							 | 
						|
								   "language": "python",
							 | 
						|
								   "name": "python3"
							 | 
						|
								  },
							 | 
						|
								  "language_info": {
							 | 
						|
								   "codemirror_mode": {
							 | 
						|
								    "name": "ipython",
							 | 
						|
								    "version": 3
							 | 
						|
								   },
							 | 
						|
								   "file_extension": ".py",
							 | 
						|
								   "mimetype": "text/x-python",
							 | 
						|
								   "name": "python",
							 | 
						|
								   "nbconvert_exporter": "python",
							 | 
						|
								   "pygments_lexer": "ipython3",
							 | 
						|
								   "version": "3.10.12"
							 | 
						|
								  },
							 | 
						|
								  "orig_nbformat": 4
							 | 
						|
								 },
							 | 
						|
								 "nbformat": 4,
							 | 
						|
								 "nbformat_minor": 2
							 | 
						|
								}
							 |