You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

101 lines
3.8 KiB

from . import core
from .core import *
from . import storage
from .storage import *
from .version import __version__
import stormpy.logic
from pycarl import Variable # needed for building parametric models
core._set_up("")
def build_model(program, properties=None):
"""
Build a model from a symbolic description
:param PrismProgram program: Prism program to translate into a model.
:param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved.
"""
if properties:
formulae = [prop.raw_formula for prop in properties]
intermediate = core._build_sparse_model_from_prism_program(program, formulae)
else:
intermediate = core._build_sparse_model_from_prism_program(program)
assert not intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_dtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_mdp()
else:
raise RuntimeError("Not supported non-parametric model constructed")
def build_parametric_model(program, properties=None):
"""
:param PrismProgram program: Prism program with open constants to translate into a parametric model.
:param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved.
"""
if properties:
formulae = [prop.raw_formula for prop in properties]
else:
formulae = []
intermediate = core._build_sparse_parametric_model_from_prism_program(program, formulae)
assert intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_pdtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_pmdp()
else:
raise RuntimeError("Not supported parametric model constructed")
def perform_bisimulation(model, property, bisimulation_type):
if model.supports_parameters:
return core._perform_parametric_bisimulation(model, property.raw_formula, bisimulation_type)
else:
return core._perform_bisimulation(model, property.raw_formula, bisimulation_type)
def model_checking(model, property):
if model.supports_parameters:
return core._parametric_model_checking(model, property.raw_formula)
else:
return core._model_checking(model, property.raw_formula)
def compute_prob01_states(model, phi_states, psi_states):
"""
Compute prob01 states for properties of the form phi_states until psi_states
:param SparseDTMC model:
:param BitVector phi_states:
:param BitVector psi_states:
"""
if model.model_type != ModelType.DTMC:
raise ValueError("Prob 01 is only defined for DTMCs -- model must be a DTMC")
if model.supports_parameters:
return core._compute_prob01states_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_double(model, phi_states, psi_states)
def compute_prob01min_states(model, phi_states, psi_states):
if model.model_type == ModelType.DTMC:
return compute_prob01_states(model, phi_states, psi_states)
if model.supports_parameters:
return core._compute_prob01states_min_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_min_double(model, phi_states, psi_states)
def compute_prob01max_states(model, phi_states, psi_states):
if model.model_type == ModelType.DTMC:
return compute_prob01_states(model, phi_states, psi_states)
if model.supports_parameters:
return core._compute_prob01states_max_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_max_double(model, phi_states, psi_states)