You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

148 lines
4.9 KiB

import gymnasium as gym
import minigrid
from ray.tune import register_env
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.algorithms.dqn.dqn import DQNConfig
from ray.tune.logger import pretty_print
from ray.rllib.models import ModelCatalog
from torch_action_mask_model import TorchActionMaskModel
from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
from helpers import parse_arguments, create_log_dir, ShieldingConfig
from shieldhandlers import MiniGridShieldHandler, create_shield_query
from callbacks import MyCallbacks
from ray.tune.logger import TBXLogger
def shielding_env_creater(config):
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
framestack = config.get("framestack", 4)
args = config.get("args", None)
args.grid_path = F"{args.grid_path}_{config.worker_index}_{args.prism_config}.txt"
args.prism_path = F"{args.prism_path}_{config.worker_index}_{args.prism_config}.prism"
prob_forward = args.prob_forward
prob_direct = args.prob_direct
prob_next = args.prob_next
shield_creator = MiniGridShieldHandler(args.grid_path,
args.grid_to_prism_binary_path,
args.prism_path,
args.formula,
args.shield_value,
args.prism_config,
shield_comparision=args.shield_comparision)
env = gym.make(name, randomize_start=True,probability_forward=prob_forward, probability_direct_neighbour=prob_direct, probability_next_neighbour=prob_next)
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator,
shield_query_creator=create_shield_query,
mask_actions=args.shielding != ShieldingConfig.Disabled,
create_shield_at_reset=args.shield_creation_at_reset)
# env = minigrid.wrappers.ImgObsWrapper(env)
# env = ImgObsWrapper(env)
env = OneHotShieldingWrapper(env,
config.vector_index if hasattr(config, "vector_index") else 0,
framestack=framestack
)
return env
def register_minigrid_shielding_env(args):
env_name = "mini-grid-shielding"
register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model(
"shielding_model",
TorchActionMaskModel
)
def ppo(args):
register_minigrid_shielding_env(args)
config = (PPOConfig()
.rollouts(num_rollout_workers=args.workers)
.resources(num_gpus=0)
.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training})
.framework("torch")
.callbacks(MyCallbacks)
.rl_module(_enable_rl_module_api = False)
.debugging(logger_config={
"type": TBXLogger,
"logdir": create_log_dir(args)
})
# .exploration(exploration_config={"exploration_fraction": 0.1})
.training(_enable_learner_api=False ,model={
"custom_model": "shielding_model"
}))
# config.entropy_coeff = 0.05
algo =(
config.build()
)
for i in range(args.evaluations):
result = algo.train()
print(pretty_print(result))
if i % 5 == 0:
checkpoint_dir = algo.save()
print(f"Checkpoint saved in directory {checkpoint_dir}")
algo.save()
def dqn(args):
register_minigrid_shielding_env(args)
config = DQNConfig()
config = config.resources(num_gpus=0)
config = config.rollouts(num_rollout_workers=args.workers)
config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args })
config = config.framework("torch")
config = config.callbacks(MyCallbacks)
config = config.rl_module(_enable_rl_module_api = False)
config = config.debugging(logger_config={
"type": TBXLogger,
"logdir": create_log_dir(args)
})
config = config.training(hiddens=[], dueling=False, model={
"custom_model": "shielding_model"
})
algo = (
config.build()
)
for i in range(args.evaluations):
result = algo.train()
print(pretty_print(result))
if i % 5 == 0:
print("Saving checkpoint")
checkpoint_dir = algo.save()
print(f"Checkpoint saved in directory {checkpoint_dir}")
def main():
import argparse
args = parse_arguments(argparse)
if args.algorithm == "PPO":
ppo(args)
elif args.algorithm == "DQN":
dqn(args)
if __name__ == '__main__':
main()