You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

120 lines
5.2 KiB

import stormpy
import stormpy.logic
from helpers.helper import get_example_path
import pytest
class TestSparseModelComponents:
def test_init_default(self):
components = stormpy.SparseModelComponents()
assert components.state_labeling.get_labels() == set()
assert components.reward_models == {}
assert components.transition_matrix.nr_rows == 0
assert components.transition_matrix.nr_columns == 0
assert components.markovian_states is None
assert components.player1_matrix is None
assert not components.rate_transitions
def test_build_dtmc_from_model_components(self):
nr_states = 13
# TransitionMatrix
builder = stormpy.SparseMatrixBuilder(rows=0, columns=0, entries=0, force_dimensions=False,
has_custom_row_grouping=False, row_groups=0)
# Add transitions
builder.add_next_value(0, 1, 0.5)
builder.add_next_value(0, 2, 0.5)
builder.add_next_value(1, 3, 0.5)
builder.add_next_value(1, 4, 0.5)
builder.add_next_value(2, 5, 0.5)
builder.add_next_value(2, 6, 0.5)
builder.add_next_value(3, 7, 0.5)
builder.add_next_value(3, 1, 0.5)
builder.add_next_value(4, 8, 0.5)
builder.add_next_value(4, 9, 0.5)
builder.add_next_value(5, 10, 0.5)
builder.add_next_value(5, 11, 0.5)
builder.add_next_value(6, 2, 0.5)
builder.add_next_value(6, 12, 0.5)
for s in range(7, 13):
builder.add_next_value(s, s, 1)
# Build transition matrix, update number of rows and columns
transition_matrix = builder.build(nr_states, nr_states)
# StateLabeling
state_labeling = stormpy.storage.StateLabeling(nr_states)
labels = {'init', 'one', 'two', 'three', 'four', 'five', 'six', 'done', 'deadlock'}
for label in labels:
state_labeling.add_label(label)
# Add label to one state
state_labeling.add_label_to_state('init', 0)
state_labeling.add_label_to_state('one', 7)
state_labeling.add_label_to_state('two', 8)
state_labeling.add_label_to_state('three', 9)
state_labeling.add_label_to_state('four', 10)
state_labeling.add_label_to_state('five', 11)
state_labeling.add_label_to_state('six', 12)
# Set the labeling of states given in a bit vector, where length = nr_states
state_labeling.set_states('done', stormpy.BitVector(nr_states, [7, 8, 9, 10, 11, 12]))
# RewardModels
reward_models = {}
# Create a vector representing the state-action rewards
action_reward = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
reward_models['coin_flips'] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward)
# todo state valuations
# todo choice origins:
prism_program = stormpy.parse_prism_program(get_example_path("dtmc", "die.pm"))
index_to_identifier_mapping = [1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8]
id_to_command_set_mapping = [stormpy.FlatSet() for _ in range(9)]
for i in range(1, 8): # 0: no origin
id_to_command_set_mapping[i].insert(i - 1)
for i in range(8, 14):
id_to_command_set_mapping[8].insert(7)
#
choice_origins = stormpy.PrismChoiceOrigins(prism_program, index_to_identifier_mapping,
id_to_command_set_mapping)
components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling,
reward_models=reward_models)
components.choice_origins = choice_origins
# todo components.state_valuations = state_valuations
dtmc = stormpy.storage.SparseDtmc(components)
assert type(dtmc) is stormpy.SparseDtmc
assert not dtmc.supports_parameters
# test transition matrix
assert dtmc.nr_choices == 13
assert dtmc.nr_states == 13
assert dtmc.nr_transitions == 20
assert dtmc.transition_matrix.nr_entries == dtmc.nr_transitions
for e in dtmc.transition_matrix:
assert e.value() == 0.5 or e.value() == 0 or (e.value() == 1 and e.column > 6)
for state in dtmc.states:
assert len(state.actions) <= 1
# test state_labeling
assert dtmc.labeling.get_labels() == {'init', 'deadlock', 'done', 'one', 'two', 'three', 'four', 'five', 'six'}
# test reward_models
assert len(dtmc.reward_models) == 1
assert not dtmc.reward_models["coin_flips"].has_state_rewards
assert dtmc.reward_models["coin_flips"].has_state_action_rewards
for reward in dtmc.reward_models["coin_flips"].state_action_rewards:
assert reward == 1.0 or reward == 0.0
assert not dtmc.reward_models["coin_flips"].has_transition_rewards
# choice_labeling
assert not dtmc.has_choice_labeling()
# todo state_valuations
# assert dtmc.has_state_valuations() and more tests
# todo choice_origins
# assert dtmc.has_choice_origins() and more tests
# assert dtmc.choice_origins is components.choice_origins # todo