173 lines
6.5 KiB

from . import core
from .core import *
from . import storage
from .storage import *
from ._config import *
from .logic import *
from pycarl import Variable # needed for building parametric models
__version__ = "unknown"
try:
from _version import __version__
except ImportError:
# We're running in a tree that doesn't have a _version.py, so we don't know what our version is.
pass
core._set_up("")
def build_model(program, properties=None):
"""
Build a model from a symbolic description.
:param PrismProgram program: Prism program to translate into a model.
:param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved.
:return: Model in sparse representation.
:rtype: SparseDtmc or SparseMdp
"""
if properties:
formulae = [prop.raw_formula for prop in properties]
intermediate = core._build_sparse_model_from_prism_program(program, formulae)
else:
intermediate = core._build_sparse_model_from_prism_program(program)
assert not intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_dtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_mdp()
else:
raise RuntimeError("Not supported non-parametric model constructed")
def build_parametric_model(program, properties=None):
"""
Build a parametric model from a symbolic description.
:param PrismProgram program: Prism program with open constants to translate into a parametric model.
:param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved.
:return: Parametric model in sparse representation.
:rtype: SparseParametricDtmc or SparseParametricMdp
"""
if properties:
formulae = [prop.raw_formula for prop in properties]
else:
formulae = []
intermediate = core._build_sparse_parametric_model_from_prism_program(program, formulae)
assert intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_pdtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_pmdp()
else:
raise RuntimeError("Not supported parametric model constructed")
def build_model_from_drn(file):
"""
Build a model from the explicit DRN representation.
:param String file: DRN file containing the model.
:return: Model in sparse representation.
:rtype: SparseDtmc or SparseMdp or SparseCTMC or SparseMA
"""
intermediate = core._build_sparse_model_from_drn(file)
assert not intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_dtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_mdp()
elif intermediate.model_type == ModelType.CTMC:
return intermediate._as_ctmc()
elif intermediate.model_type == ModelType.MA:
return intermediate._as_ma()
else:
raise RuntimeError("Not supported non-parametric model constructed")
def build_parametric_model_from_drn(file):
"""
Build a parametric model from the explicit DRN representation.
:param String file: DRN file containing the model.
:return: Parametric model in sparse representation.
:rtype: SparseParametricDtmc or SparseParametricMdp or SparseParametricCTMC or SparseParametricMA
"""
intermediate = core._build_sparse_parametric_model_from_drn(file)
assert intermediate.supports_parameters
if intermediate.model_type == ModelType.DTMC:
return intermediate._as_pdtmc()
elif intermediate.model_type == ModelType.MDP:
return intermediate._as_pmdp()
elif intermediate.model_type == ModelType.CTMC:
return intermediate._as_pctmc()
elif intermediate.model_type == ModelType.MA:
return intermediate._as_pma()
else:
raise RuntimeError("Not supported parametric model constructed")
def perform_bisimulation(model, properties, bisimulation_type):
"""
Perform bisimulation on model.
:param model: Model.
:param properties: Properties to preserve during bisimulation.
:param bisimulation_type: Type of bisimulation (weak or strong).
:return: Model after bisimulation.
"""
formulae = [prop.raw_formula for prop in properties]
if model.supports_parameters:
return core._perform_parametric_bisimulation(model, formulae, bisimulation_type)
else:
return core._perform_bisimulation(model, formulae, bisimulation_type)
def model_checking(model, property):
"""
Perform model checking on model for property.
:param model: Model.
:param property: Property to check for.
:return: Model checking result.
:rtype: CheckResult
"""
if model.supports_parameters:
task = core.ParametricCheckTask(property.raw_formula, False)
return core._parametric_model_checking_sparse_engine(model, task)
else:
task = core.CheckTask(property.raw_formula, False)
return core._model_checking_sparse_engine(model, task)
def compute_prob01_states(model, phi_states, psi_states):
"""
Compute prob01 states for properties of the form phi_states until psi_states
:param SparseDTMC model:
:param BitVector phi_states:
:param BitVector psi_states:
"""
if model.model_type != ModelType.DTMC:
raise ValueError("Prob 01 is only defined for DTMCs -- model must be a DTMC")
if model.supports_parameters:
return core._compute_prob01states_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_double(model, phi_states, psi_states)
def compute_prob01min_states(model, phi_states, psi_states):
if model.model_type == ModelType.DTMC:
return compute_prob01_states(model, phi_states, psi_states)
if model.supports_parameters:
return core._compute_prob01states_min_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_min_double(model, phi_states, psi_states)
def compute_prob01max_states(model, phi_states, psi_states):
if model.model_type == ModelType.DTMC:
return compute_prob01_states(model, phi_states, psi_states)
if model.supports_parameters:
return core._compute_prob01states_max_rationalfunc(model, phi_states, psi_states)
else:
return core._compute_prob01states_max_double(model, phi_states, psi_states)