You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
4.5 KiB
95 lines
4.5 KiB
from sb3_contrib import MaskablePPO
|
|
from sb3_contrib.common.maskable.callbacks import MaskableEvalCallback
|
|
from sb3_contrib.common.wrappers import ActionMasker
|
|
from stable_baselines3.common.logger import Logger, CSVOutputFormat, TensorBoardOutputFormat, HumanOutputFormat
|
|
|
|
import gymnasium as gym
|
|
|
|
from minigrid.core.actions import Actions
|
|
from minigrid.wrappers import RGBImgObsWrapper, ImgObsWrapper
|
|
|
|
import time
|
|
|
|
from utils import MiniGridShieldHandler, create_log_dir, ShieldingConfig, MiniWrapper, expname, shield_needed, shielded_evaluation
|
|
from sb3utils import MiniGridSbShieldingWrapper, parse_sb3_arguments, ImageRecorderCallback, InfoCallback
|
|
from stable_baselines3.common.callbacks import EvalCallback
|
|
|
|
import os, sys
|
|
from copy import deepcopy
|
|
|
|
GRID_TO_PRISM_BINARY=os.getenv("M2P_BINARY")
|
|
def mask_fn(env: gym.Env):
|
|
return env.create_action_mask()
|
|
|
|
def nomask_fn(env: gym.Env):
|
|
return [1.0] * 7
|
|
|
|
def main():
|
|
args = parse_sb3_arguments()
|
|
|
|
formula = args.formula
|
|
shield_value = args.shield_value
|
|
shield_comparison = args.shield_comparison
|
|
log_dir = create_log_dir(args)
|
|
#new_logger = Logger(log_dir, output_formats=[CSVOutputFormat(os.path.join(log_dir, f"progress_{expname(args)}.csv")), TensorBoardOutputFormat(log_dir)])
|
|
new_logger = Logger(log_dir, output_formats=[CSVOutputFormat(os.path.join(log_dir, f"progress_{expname(args)}.csv")), TensorBoardOutputFormat(log_dir), HumanOutputFormat(sys.stdout)])
|
|
|
|
|
|
if shield_needed(args.shielding):
|
|
shield_handler = MiniGridShieldHandler(GRID_TO_PRISM_BINARY, args.grid_file, args.prism_output_file, formula, shield_value=shield_value, shield_comparison=shield_comparison, nocleanup=args.nocleanup, prism_file=args.prism_file)
|
|
|
|
|
|
env = gym.make(args.env, render_mode="rgb_array")
|
|
env = RGBImgObsWrapper(env)
|
|
env = ImgObsWrapper(env)
|
|
env = MiniWrapper(env)
|
|
eval_env = deepcopy(env)
|
|
eval_env.disable_random_start()
|
|
if args.shielding == ShieldingConfig.Full:
|
|
env = MiniGridSbShieldingWrapper(env, shield_handler=shield_handler, create_shield_at_reset=False)
|
|
env = ActionMasker(env, mask_fn)
|
|
eval_env = MiniGridSbShieldingWrapper(eval_env, shield_handler=shield_handler, create_shield_at_reset=False)
|
|
eval_env = ActionMasker(eval_env, mask_fn)
|
|
elif args.shielding == ShieldingConfig.Training:
|
|
env = MiniGridSbShieldingWrapper(env, shield_handler=shield_handler, create_shield_at_reset=False)
|
|
env = ActionMasker(env, mask_fn)
|
|
eval_env = ActionMasker(eval_env, nomask_fn)
|
|
elif args.shielding == ShieldingConfig.Evaluation:
|
|
env = ActionMasker(env, nomask_fn)
|
|
eval_env = MiniGridSbShieldingWrapper(eval_env, shield_handler=shield_handler, create_shield_at_reset=False)
|
|
eval_env = ActionMasker(eval_env, mask_fn)
|
|
elif args.shielding == ShieldingConfig.Disabled:
|
|
env = ActionMasker(env, nomask_fn)
|
|
eval_env = ActionMasker(eval_env, nomask_fn)
|
|
else:
|
|
assert(False) # TODO Do something proper
|
|
model = MaskablePPO("CnnPolicy", env, verbose=1, tensorboard_log=log_dir, device="auto")
|
|
model.set_logger(new_logger)
|
|
steps = args.steps
|
|
|
|
|
|
# Evaluation
|
|
#eval_freq=max(500, int(args.steps/30))
|
|
eval_freq=10000
|
|
n_eval_episodes=25
|
|
render_freq = eval_freq
|
|
if shielded_evaluation(args.shielding):
|
|
from sb3_contrib.common.maskable.evaluation import evaluate_policy
|
|
evalCallback = MaskableEvalCallback(eval_env, best_model_save_path=log_dir,
|
|
log_path=log_dir, eval_freq=eval_freq,
|
|
deterministic=True, render=False, n_eval_episodes=n_eval_episodes)
|
|
imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0)
|
|
else:
|
|
from stable_baselines3.common.evaluation import evaluate_policy
|
|
evalCallback = EvalCallback(eval_env, best_model_save_path=log_dir,
|
|
log_path=log_dir, eval_freq=eval_freq,
|
|
deterministic=True, render=False, n_eval_episodes=n_eval_episodes)
|
|
|
|
imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0)
|
|
|
|
model.learn(steps,callback=[imageAndVideoCallback, InfoCallback()])
|
|
model.save(f"{log_dir}/{expname(args)}")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|