You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
58 lines
2.1 KiB
58 lines
2.1 KiB
import stormpy
|
|
import stormpy.core
|
|
import stormpy.simulator
|
|
|
|
|
|
import stormpy.shields
|
|
|
|
import stormpy.examples
|
|
import stormpy.examples.files
|
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
from dtcontrol.benchmark_suite import BenchmarkSuite
|
|
from dtcontrol.decision_tree.decision_tree import DecisionTree
|
|
from dtcontrol.decision_tree.determinization.max_freq_determinizer import MaxFreqDeterminizer
|
|
from dtcontrol.decision_tree.impurity.entropy import Entropy
|
|
from dtcontrol.decision_tree.impurity.multi_label_entropy import MultiLabelEntropy
|
|
from dtcontrol.decision_tree.splitting.axis_aligned import AxisAlignedSplittingStrategy
|
|
from dtcontrol.decision_tree.splitting.linear_classifier import LinearClassifierSplittingStrategy
|
|
|
|
|
|
from stormpy.decision_tree import create_decision_tree
|
|
|
|
def export_shield_as_dot():
|
|
path = stormpy.examples.files.prism_mdp_lava_simple
|
|
formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
|
|
|
|
program = stormpy.parse_prism_program(path)
|
|
formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
|
|
|
|
options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
|
|
options.set_build_state_valuations(True)
|
|
options.set_build_choice_labels(True)
|
|
options.set_build_all_labels()
|
|
options.set_build_with_choice_origins(True)
|
|
model = stormpy.build_sparse_model_with_options(program, options)
|
|
|
|
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9)
|
|
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
|
|
|
|
assert result.has_shield
|
|
|
|
shield = result.shield
|
|
filename = "preshield.storm.json"
|
|
stormpy.shields.export_shield(model, shield, filename)
|
|
|
|
output_folder = "pre_trees"
|
|
name = 'pre_my_output'
|
|
|
|
aa = AxisAlignedSplittingStrategy()
|
|
aa.priority = 1
|
|
|
|
classifiers = [DecisionTree([aa], Entropy(), name)]
|
|
|
|
suite = create_decision_tree(filename, name=name , output_folder=output_folder, export_pdf=True, classifiers=classifiers)
|
|
suite.display_html()
|
|
|
|
if __name__ == '__main__':
|
|
export_shield_as_dot()
|