You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

64 lines
2.2 KiB

import stormpy
import stormpy.core
import stormpy.simulator
import stormpy.shields
import stormpy.examples
import stormpy.examples.files
import random
"""
Simulating a model with the usage of a pre shield
"""
def example_pre_shield_simulator():
path = stormpy.examples.files.prism_mdp_cliff_walking
formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
program = stormpy.parse_prism_program(path)
formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
options.set_build_state_valuations(True)
options.set_build_choice_labels(True)
options.set_build_all_labels()
model = stormpy.build_sparse_model_with_options(program, options)
initial_state = model.initial_states[0]
assert initial_state == 0
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9)
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
assert result.has_scheduler
assert result.has_shield
shield = result.shield
pre_scheduler = shield.construct()
simulator = stormpy.simulator.create_simulator(model, seed=42)
while not simulator.is_done():
current_state = simulator.get_current_state()
state_string = model.state_valuations.get_string(current_state)
print(F"Simulator is in state {state_string}.")
choices = [x for x in pre_scheduler.get_choice(current_state).choice_map if x[0] > 0]
choice_labels = [model.choice_labeling.get_labels_of_choice(model.get_choice_index(current_state, choice[1])) for choice in choices]
if not choices:
break
index = random.randint(0, len(choices) - 1)
selected_action = choices[index]
choice_label = model.choice_labeling.get_labels_of_choice(model.get_choice_index(current_state, selected_action[1]))
print(F"Allowed Choices are {choice_labels}. Selected Action: {choice_label}")
observation, reward = simulator.step(selected_action[1])
if __name__ == '__main__':
example_pre_shield_simulator()