# from typing import Dict # from ray.rllib.env.base_env import BaseEnv # from ray.rllib.evaluation import RolloutWorker # from ray.rllib.evaluation.episode import Episode # from ray.rllib.evaluation.episode_v2 import EpisodeV2 # from ray.rllib.policy import Policy # from ray.rllib.utils.typing import PolicyID import gymnasium as gym import minigrid # import numpy as np # import ray from ray.tune import register_env from ray.rllib.algorithms.ppo import PPOConfig from ray.rllib.algorithms.dqn.dqn import DQNConfig # from ray.rllib.algorithms.callbacks import DefaultCallbacks from ray.tune.logger import pretty_print from ray.rllib.models import ModelCatalog from TorchActionMaskModel import TorchActionMaskModel from Wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper from helpers import parse_arguments, create_log_dir from ShieldHandlers import MiniGridShieldHandler import matplotlib.pyplot as plt from ray.tune.logger import TBXLogger # class MyCallbacks(DefaultCallbacks): # def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: # # print(F"Epsiode started Environment: {base_env.get_sub_environments()}") # env = base_env.get_sub_environments()[0] # episode.user_data["count"] = 0 # # print("On episode start print") # # print(env.printGrid()) # # print(worker) # # print(env.action_space.n) # # print(env.actions) # # print(env.mission) # # print(env.observation_space) # # img = env.get_frame() # # plt.imshow(img) # # plt.show() # def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy] | None = None, episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: # episode.user_data["count"] = episode.user_data["count"] + 1 # env = base_env.get_sub_environments()[0] # # print(env.printGrid()) # def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2 | Exception, env_index: int | None = None, **kwargs) -> None: # # print(F"Epsiode end Environment: {base_env.get_sub_environments()}") # env = base_env.get_sub_environments()[0] # #print("On episode end print") # #print(env.printGrid()) def shielding_env_creater(config): name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") framestack = config.get("framestack", 4) args = config.get("args", None) args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) env = gym.make(name) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator) # env = minigrid.wrappers.ImgObsWrapper(env) # env = ImgObsWrapper(env) env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env def register_minigrid_shielding_env(args): env_name = "mini-grid" register_env(env_name, shielding_env_creater) ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel ) def ppo(args): register_minigrid_shielding_env(args) config = (PPOConfig() .rollouts(num_rollout_workers=args.workers) .resources(num_gpus=0) .environment(env="mini-grid", env_config={"name": args.env, "args": args}) .framework("torch") #.callbacks(MyCallbacks) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": TBXLogger, "logdir": create_log_dir(args) }) .training(_enable_learner_api=False ,model={ "custom_model": "shielding_model", "custom_model_config" : {"no_masking": args.no_masking} })) algo =( config.build() ) algo.eva for i in range(args.iterations): result = algo.train() print(pretty_print(result)) if i % 5 == 0: checkpoint_dir = algo.save() print(f"Checkpoint saved in directory {checkpoint_dir}") def dqn(args): register_minigrid_shielding_env(args) config = DQNConfig() config = config.resources(num_gpus=0) config = config.rollouts(num_rollout_workers=args.workers) config = config.environment(env="mini-grid", env_config={"name": args.env, "args": args }) config = config.framework("torch") #config = config.callbacks(MyCallbacks) config = config.rl_module(_enable_rl_module_api = False) config = config.debugging(logger_config={ "type": TBXLogger, "logdir": create_log_dir(args) }) config = config.training(hiddens=[], dueling=False, model={ "custom_model": "shielding_model", "custom_model_config" : {"no_masking": args.no_masking} }) algo = ( config.build() ) for i in range(args.iterations): result = algo.train() print(pretty_print(result)) if i % 5 == 0: print("Saving checkpoint") checkpoint_dir = algo.save() print(f"Checkpoint saved in directory {checkpoint_dir}") def main(): import argparse args = parse_arguments(argparse) if args.algorithm == "ppo": ppo(args) elif args.algorithm == "dqn": dqn(args) if __name__ == '__main__': main()