import gymnasium as gym import minigrid from ray import tune, air from ray.tune import register_env from ray.rllib.algorithms.algorithm import Algorithm from ray.rllib.algorithms.ppo import PPOConfig from ray.rllib.algorithms.dqn.dqn import DQNConfig from ray.tune.logger import pretty_print from ray.rllib.models import ModelCatalog from torch_action_mask_model import TorchActionMaskModel from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper from helpers import parse_arguments, create_log_dir, ShieldingConfig from shieldhandlers import MiniGridShieldHandler, create_shield_query from callbacks import MyCallbacks from torch.utils.tensorboard import SummaryWriter from ray.tune.logger import TBXLogger, UnifiedLogger, CSVLogger def shielding_env_creater(config): name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") framestack = config.get("framestack", 4) args = config.get("args", None) args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) env = gym.make(name) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query) # env = minigrid.wrappers.ImgObsWrapper(env) # env = ImgObsWrapper(env) env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env def register_minigrid_shielding_env(args): env_name = "mini-grid-shielding" register_env(env_name, shielding_env_creater) ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel ) def ppo(args): register_minigrid_shielding_env(args) config = (PPOConfig() .rollouts(num_rollout_workers=args.workers) .resources(num_gpus=0) .environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training}) .framework("torch") .callbacks(MyCallbacks) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": TBXLogger, "logdir": create_log_dir(args) }) .training(_enable_learner_api=False ,model={ "custom_model": "shielding_model" })) return config def dqn(args): register_minigrid_shielding_env(args) config = DQNConfig() config = config.resources(num_gpus=0) config = config.rollouts(num_rollout_workers=args.workers) config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args }) config = config.framework("torch") config = config.callbacks(MyCallbacks) config = config.rl_module(_enable_rl_module_api = False) config = config.debugging(logger_config={ "type": TBXLogger, "logdir": create_log_dir(args) }) config = config.training(hiddens=[], dueling=False, model={ "custom_model": "shielding_model" }) return config def main(): import argparse args = parse_arguments(argparse) if args.algorithm == "PPO": config = ppo(args) elif args.algorithm == "DQN": config = dqn(args) logdir = create_log_dir(args) tuner = tune.Tuner(args.algorithm, tune_config=tune.TuneConfig( metric="episode_reward_mean", mode="max", num_samples=1, ), run_config=air.RunConfig( stop = {"episode_reward_mean": 94, "timesteps_total": 12000,}, checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ), storage_path=F"{logdir}" ), param_space=config, ) tuner.fit() if __name__ == '__main__': main()