import gymnasium as gym import minigrid from ray.tune import register_env from ray.rllib.algorithms.ppo import PPOConfig from ray.rllib.algorithms.dqn.dqn import DQNConfig from ray.tune.logger import pretty_print from ray.rllib.models import ModelCatalog from torch_action_mask_model import TorchActionMaskModel from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper from helpers import parse_arguments, create_log_dir, ShieldingConfig from shieldhandlers import MiniGridShieldHandler, create_shield_query from callbacks import MyCallbacks from ray.tune.logger import TBXLogger def shielding_env_creater(config): name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") framestack = config.get("framestack", 4) args = config.get("args", None) args.grid_path = F"{args.grid_path}_{config.worker_index}_{args.prism_config}.txt" args.prism_path = F"{args.prism_path}_{config.worker_index}_{args.prism_config}.prism" prob_forward = args.prob_forward prob_direct = args.prob_direct prob_next = args.prob_next shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula, args.shield_value, args.prism_config, shield_comparision=args.shield_comparision) env = gym.make(name, randomize_start=True,probability_forward=prob_forward, probability_direct_neighbour=prob_direct, probability_next_neighbour=prob_next) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query, mask_actions=args.shielding != ShieldingConfig.Disabled, create_shield_at_reset=args.shield_creation_at_reset) # env = minigrid.wrappers.ImgObsWrapper(env) # env = ImgObsWrapper(env) env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env def register_minigrid_shielding_env(args): env_name = "mini-grid-shielding" register_env(env_name, shielding_env_creater) ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel ) def ppo(args): register_minigrid_shielding_env(args) config = (PPOConfig() .rollouts(num_rollout_workers=args.workers) .resources(num_gpus=0) .environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training}) .framework("torch") .callbacks(MyCallbacks) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": TBXLogger, "logdir": create_log_dir(args) }) # .exploration(exploration_config={"exploration_fraction": 0.1}) .training(_enable_learner_api=False ,model={ "custom_model": "shielding_model" })) # config.entropy_coeff = 0.05 algo =( config.build() ) for i in range(args.evaluations): result = algo.train() print(pretty_print(result)) if i % 5 == 0: checkpoint_dir = algo.save() print(f"Checkpoint saved in directory {checkpoint_dir}") algo.save() def dqn(args): register_minigrid_shielding_env(args) config = DQNConfig() config = config.resources(num_gpus=0) config = config.rollouts(num_rollout_workers=args.workers) config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args }) config = config.framework("torch") config = config.callbacks(MyCallbacks) config = config.rl_module(_enable_rl_module_api = False) config = config.debugging(logger_config={ "type": TBXLogger, "logdir": create_log_dir(args) }) config = config.training(hiddens=[], dueling=False, model={ "custom_model": "shielding_model" }) algo = ( config.build() ) for i in range(args.evaluations): result = algo.train() print(pretty_print(result)) if i % 5 == 0: print("Saving checkpoint") checkpoint_dir = algo.save() print(f"Checkpoint saved in directory {checkpoint_dir}") def main(): import argparse args = parse_arguments(argparse) if args.algorithm == "PPO": ppo(args) elif args.algorithm == "DQN": dqn(args) if __name__ == '__main__': main()