{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example how to combine shielding with rllibs ppo algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gymnasium as gym\n",
    "\n",
    "import minigrid\n",
    "\n",
    "from ray import tune, air\n",
    "from ray.tune import register_env\n",
    "from ray.rllib.algorithms.ppo import PPOConfig\n",
    "from ray.tune.logger import pretty_print\n",
    "from ray.rllib.models import ModelCatalog\n",
    "\n",
    "\n",
    "from torch_action_mask_model import TorchActionMaskModel\n",
    "from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper\n",
    "from shieldhandlers import MiniGridShieldHandler, create_shield_query\n",
    "  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def shielding_env_creater(config):\n",
    "    name = config.get(\"name\", \"MiniGrid-LavaCrossingS9N1-v0\")\n",
    "    framestack = config.get(\"framestack\", 4)\n",
    "    \n",
    "    shield_creator = MiniGridShieldHandler(\"grid.txt\", \"./main\", \"grid.prism\", \"Pmax=? [G !\\\"AgentIsInLavaAndNotDone\\\"]\")\n",
    "    \n",
    "    env = gym.make(name)\n",
    "    env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=True)\n",
    "    env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, \"vector_index\") else 0,\n",
    "                                 framestack=framestack)\n",
    "    \n",
    "    return env\n",
    "\n",
    "\n",
    "def register_minigrid_shielding_env():\n",
    "    env_name = \"mini-grid-shielding\"\n",
    "    register_env(env_name, shielding_env_creater)\n",
    "    ModelCatalog.register_custom_model(\n",
    "        \"shielding_model\", \n",
    "        TorchActionMaskModel)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "register_minigrid_shielding_env()\n",
    "\n",
    "\n",
    "config = (PPOConfig()\n",
    "    .rollouts(num_rollout_workers=1)\n",
    "    .resources(num_gpus=0)\n",
    "    .environment(env=\"mini-grid-shielding\", env_config={\"name\": \"MiniGrid-LavaCrossingS9N1-v0\"})\n",
    "    .framework(\"torch\")\n",
    "    .rl_module(_enable_rl_module_api = False)\n",
    "    .training(_enable_learner_api=False ,model={\n",
    "        \"custom_model\": \"shielding_model\"\n",
    "    }))\n",
    "\n",
    "tuner = tune.Tuner(\"PPO\",\n",
    "                    tune_config=tune.TuneConfig(\n",
    "                        metric=\"episode_reward_mean\",\n",
    "                        mode=\"max\",\n",
    "                        num_samples=1,\n",
    "                        \n",
    "                    ),\n",
    "                    run_config=air.RunConfig(\n",
    "                            stop = {\"episode_reward_mean\": 94,\n",
    "                                    \"timesteps_total\": 12000,\n",
    "                                    \"training_iteration\": 12}, \n",
    "                            checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ),\n",
    "                    ),\n",
    "                    param_space=config,)\n",
    "\n",
    "tuner.fit()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}