import gymnasium as gym import numpy as np from gymnasium.spaces import Dict, Box from collections import deque from ray.rllib.utils.numpy import one_hot from helpers import get_action_index_mapping class OneHotWrapper(gym.core.ObservationWrapper): def __init__(self, env, vector_index, framestack): super().__init__(env) self.framestack = framestack # 49=7x7 field of vision; 11=object types; 6=colors; 3=state types. # +4: Direction. self.single_frame_dim = 49 * (11 + 6 + 3) + 4 self.init_x = None self.init_y = None self.x_positions = [] self.y_positions = [] self.x_y_delta_buffer = deque(maxlen=100) self.vector_index = vector_index self.frame_buffer = deque(maxlen=self.framestack) for _ in range(self.framestack): self.frame_buffer.append(np.zeros((self.single_frame_dim,))) self.observation_space = Dict( { "data": gym.spaces.Box(0.0, 1.0, shape=(self.single_frame_dim * self.framestack,), dtype=np.float32), "action_mask": gym.spaces.Box(0, 10, shape=(env.action_space.n,), dtype=int), } ) # print(F"Set obersvation space to {self.observation_space}") def observation(self, obs): # Debug output: max-x/y positions to watch exploration progress. # print(F"Initial observation in Wrapper {obs}") if self.step_count == 0: for _ in range(self.framestack): self.frame_buffer.append(np.zeros((self.single_frame_dim,))) if self.vector_index == 0: if self.x_positions: max_diff = max( np.sqrt( (np.array(self.x_positions) - self.init_x) ** 2 + (np.array(self.y_positions) - self.init_y) ** 2 ) ) self.x_y_delta_buffer.append(max_diff) print( "100-average dist travelled={}".format( np.mean(self.x_y_delta_buffer) ) ) self.x_positions = [] self.y_positions = [] self.init_x = self.agent_pos[0] self.init_y = self.agent_pos[1] self.x_positions.append(self.agent_pos[0]) self.y_positions.append(self.agent_pos[1]) image = obs["data"] # One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten. objects = one_hot(image[:, :, 0], depth=11) colors = one_hot(image[:, :, 1], depth=6) states = one_hot(image[:, :, 2], depth=3) all_ = np.concatenate([objects, colors, states], -1) all_flat = np.reshape(all_, (-1,)) direction = one_hot(np.array(self.agent_dir), depth=4).astype(np.float32) single_frame = np.concatenate([all_flat, direction]) self.frame_buffer.append(single_frame) #obs["one-hot"] = np.concatenate(self.frame_buffer) tmp = {"data": np.concatenate(self.frame_buffer), "action_mask": obs["action_mask"] } return tmp#np.concatenate(self.frame_buffer) class MiniGridEnvWrapper(gym.core.Wrapper): def __init__(self, env, shield={}, keys=[]): super(MiniGridEnvWrapper, self).__init__(env) self.max_available_actions = env.action_space.n self.observation_space = Dict( { "data": env.observation_space.spaces["image"], "action_mask" : Box(0, 10, shape=(self.max_available_actions,), dtype=np.int8), } ) self.keys = keys self.shield = shield def create_action_mask(self): coordinates = self.env.agent_pos view_direction = self.env.agent_dir key_text = "" # only support one key for now if self.keys: key_text = F"!Agent_has_{self.keys[0]}_key\t& " if self.env.carrying and self.env.carrying.type == "key": key_text = F"Agent_has_{self.env.carrying.color}_key\t& " #print(F"Agent pos is {self.env.agent_pos} and direction {self.env.agent_dir} ") cur_pos_str = f"[{key_text}!AgentDone\t& xAgent={coordinates[0]}\t& yAgent={coordinates[1]}\t& viewAgent={view_direction}]" allowed_actions = [] # Create the mask # If shield restricts action mask only valid with 1.0 # else set all actions as valid mask = np.array([0.0] * self.max_available_actions, dtype=np.int8) if cur_pos_str in self.shield and self.shield[cur_pos_str]: allowed_actions = self.shield[cur_pos_str] for allowed_action in allowed_actions: index = get_action_index_mapping(allowed_action[1]) if index is None: assert(False) mask[index] = 1.0 else: # print(F"Not in shield {cur_pos_str}") for index, x in enumerate(mask): mask[index] = 1.0 # mask[0] = 1.0 # print(F"Action Mask for position {coordinates} and view {view_direction} is {mask} Position String: {cur_pos_str})") return mask def reset(self, *, seed=None, options=None): obs, infos = self.env.reset(seed=seed, options=options) mask = self.create_action_mask() return { "data": obs["image"], "action_mask": mask }, infos def step(self, action): # print(F"Performed action in step: {action}") orig_obs, rew, done, truncated, info = self.env.step(action) mask = self.create_action_mask() #print(F"Original observation is {orig_obs}") obs = { "data": orig_obs["image"], "action_mask": mask, } #print(F"Info is {info}") return obs, rew, done, truncated, info