import stormpy import numpy as np # polling example [IT90] # gxn/dxp 26/01/00 def example_building_ctmcs_01(): # Building the transition matrix using numpy transitions = np.array([ [0, 0.5, 0.5, 200, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.5, 200, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.5, 0, 200, 0, 0, 0, 0, 0], [200, 0, 0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 200, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0.5, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, 200, 0], [0, 200, 0, 0, 0, 0, 0, 0, 0, 0.5, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ,0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 200], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5 ], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], dtype='float64') # Default row groups: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] transition_matrix = stormpy.build_sparse_matrix(transitions) # State labeling state_labeling = stormpy.storage.StateLabeling(12) state_labels = {'init', 'deadlock', 'target'} for label in state_labels: state_labeling.add_label(label) # Adding label to states state_labeling.add_label_to_state('init', 0) # Sets the labeling of states given in a BitVector (length: nr_states) state_labeling.set_states('target', stormpy.BitVector(12, [5, 8])) # Choice labeling nr_choices = 12 choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices) choice_labels = {'loop1a', 'loop1b', 'serve1', 'loop2a', 'loop2b', 'serve2'} for label in choice_labels: choice_labeling.add_label(label) # Sets the labeling of states given in a bit vector (length: nr_choices) choice_labeling.set_choices('loop1a', stormpy.BitVector(nr_choices, [0, 2])) choice_labeling.set_choices('loop1b', stormpy.BitVector(nr_choices, [1, 4])) choice_labeling.set_choices('serve1', stormpy.BitVector(nr_choices, [5, 8])) choice_labeling.set_choices('loop2a', stormpy.BitVector(nr_choices, [3, 7])) choice_labeling.set_choices('loop2b', stormpy.BitVector(nr_choices, [6, 9])) choice_labeling.set_choices('serve2', stormpy.BitVector(nr_choices, [10, 11])) # Reward models: reward_models = {} # Create a vector representing the state-action rewards action_reward = [0.0, 0.0, 0.0, 0.0, 0.0, 2/3, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] reward_models['served'] = stormpy.SparseRewardModel(optional_state_action_reward_vector = action_reward) ## Create a vector representing the state rewards state_reward = [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0] reward_models['waiting'] = stormpy.SparseRewardModel(optional_state_reward_vector = state_reward) # Exit rate for each state exit_rates = [201.0, 200.5, 200.5, 201.0, 200.0, 1.5, 200.5, 200.5, 1.0, 200.0, 1.5, 1.0] # Collect components, rate_transitions = True, because the transition values are interpreted as rates (CTMC specific) components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling, reward_models=reward_models, rate_transitions = True) components.choice_labeling = choice_labeling components.exit_rates = exit_rates # Build the model ctmc = stormpy.storage.SparseCtmc(components) print(ctmc) if __name__ == '__main__': example_building_ctmcs_01()