/* pybind11/cast.h: Partial template specializations to cast between C++ and Python types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pytypes.h" #include "typeid.h" #include "descr.h" #include #include NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) inline PyTypeObject *make_static_property_type(); inline PyTypeObject *make_default_metaclass(); /// Additional type information which does not fit into the PyTypeObject struct type_info { PyTypeObject *type; size_t type_size; void *(*operator_new)(size_t); void (*init_holder)(PyObject *, const void *); void (*dealloc)(PyObject *); std::vector implicit_conversions; std::vector> implicit_casts; std::vector *direct_conversions; buffer_info *(*get_buffer)(PyObject *, void *) = nullptr; void *get_buffer_data = nullptr; /** A simple type never occurs as a (direct or indirect) parent * of a class that makes use of multiple inheritance */ bool simple_type = true; /* for base vs derived holder_type checks */ bool default_holder = true; }; PYBIND11_NOINLINE inline internals &get_internals() { static internals *internals_ptr = nullptr; if (internals_ptr) return *internals_ptr; handle builtins(PyEval_GetBuiltins()); const char *id = PYBIND11_INTERNALS_ID; if (builtins.contains(id) && isinstance(builtins[id])) { internals_ptr = capsule(builtins[id]); } else { internals_ptr = new internals(); #if defined(WITH_THREAD) PyEval_InitThreads(); PyThreadState *tstate = PyThreadState_Get(); internals_ptr->tstate = PyThread_create_key(); PyThread_set_key_value(internals_ptr->tstate, tstate); internals_ptr->istate = tstate->interp; #endif builtins[id] = capsule(internals_ptr); internals_ptr->registered_exception_translators.push_front( [](std::exception_ptr p) -> void { try { if (p) std::rethrow_exception(p); } catch (error_already_set &e) { e.restore(); return; } catch (const builtin_exception &e) { e.set_error(); return; } catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return; } catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return; } catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return; } catch (...) { PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!"); return; } } ); internals_ptr->static_property_type = make_static_property_type(); internals_ptr->default_metaclass = make_default_metaclass(); } return *internals_ptr; } PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) { auto const &type_dict = get_internals().registered_types_py; do { auto it = type_dict.find(type); if (it != type_dict.end()) return (detail::type_info *) it->second; type = type->tp_base; if (!type) return nullptr; } while (true); } PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp, bool throw_if_missing = false) { auto &types = get_internals().registered_types_cpp; auto it = types.find(std::type_index(tp)); if (it != types.end()) return (detail::type_info *) it->second; if (throw_if_missing) { std::string tname = tp.name(); detail::clean_type_id(tname); pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\""); } return nullptr; } PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) { detail::type_info *type_info = get_type_info(tp, throw_if_missing); return handle(type_info ? ((PyObject *) type_info->type) : nullptr); } PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) { handle type = detail::get_type_handle(tp, false); if (!type) return false; return isinstance(obj, type); } PYBIND11_NOINLINE inline std::string error_string() { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred"); return "Unknown internal error occurred"; } error_scope scope; // Preserve error state std::string errorString; if (scope.type) { errorString += handle(scope.type).attr("__name__").cast(); errorString += ": "; } if (scope.value) errorString += (std::string) str(scope.value); PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace); #if PY_MAJOR_VERSION >= 3 if (scope.trace != nullptr) PyException_SetTraceback(scope.value, scope.trace); #endif #if !defined(PYPY_VERSION) if (scope.trace) { PyTracebackObject *trace = (PyTracebackObject *) scope.trace; /* Get the deepest trace possible */ while (trace->tb_next) trace = trace->tb_next; PyFrameObject *frame = trace->tb_frame; errorString += "\n\nAt:\n"; while (frame) { int lineno = PyFrame_GetLineNumber(frame); errorString += " " + handle(frame->f_code->co_filename).cast() + "(" + std::to_string(lineno) + "): " + handle(frame->f_code->co_name).cast() + "\n"; frame = frame->f_back; } trace = trace->tb_next; } #endif return errorString; } PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) { auto &instances = get_internals().registered_instances; auto range = instances.equal_range(ptr); for (auto it = range.first; it != range.second; ++it) { auto instance_type = detail::get_type_info(Py_TYPE(it->second)); if (instance_type && instance_type == type) return handle((PyObject *) it->second); } return handle(); } inline PyThreadState *get_thread_state_unchecked() { #if defined(PYPY_VERSION) return PyThreadState_GET(); #elif PY_VERSION_HEX < 0x03000000 return _PyThreadState_Current; #elif PY_VERSION_HEX < 0x03050000 return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current); #elif PY_VERSION_HEX < 0x03050200 return (PyThreadState*) _PyThreadState_Current.value; #else return _PyThreadState_UncheckedGet(); #endif } // Forward declaration inline void keep_alive_impl(handle nurse, handle patient); class type_caster_generic { public: PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info) : typeinfo(get_type_info(type_info)) { } PYBIND11_NOINLINE bool load(handle src, bool convert) { if (!src) return false; return load(src, convert, Py_TYPE(src.ptr())); } bool load(handle src, bool convert, PyTypeObject *tobj) { if (!src || !typeinfo) return false; if (src.is_none()) { value = nullptr; return true; } if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ /* Check if we can safely perform a reinterpret-style cast */ if (PyType_IsSubtype(tobj, typeinfo->type)) { value = reinterpret_cast *>(src.ptr())->value; return true; } } else { /* Case 2: multiple inheritance */ /* Check if we can safely perform a reinterpret-style cast */ if (tobj == typeinfo->type) { value = reinterpret_cast *>(src.ptr())->value; return true; } /* If this is a python class, also check the parents recursively */ auto const &type_dict = get_internals().registered_types_py; bool new_style_class = PyType_Check((PyObject *) tobj); if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { auto parents = reinterpret_borrow(tobj->tp_bases); for (handle parent : parents) { bool result = load(src, convert, (PyTypeObject *) parent.ptr()); if (result) return true; } } /* Try implicit casts */ for (auto &cast : typeinfo->implicit_casts) { type_caster_generic sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); return true; } } } /* Perform an implicit conversion */ if (convert) { for (auto &converter : typeinfo->implicit_conversions) { temp = reinterpret_steal(converter(src.ptr(), typeinfo->type)); if (load(temp, false)) return true; } for (auto &converter : *typeinfo->direct_conversions) { if (converter(src.ptr(), value)) return true; } } return false; } PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent, const std::type_info *type_info, const std::type_info *type_info_backup, void *(*copy_constructor)(const void *), void *(*move_constructor)(const void *), const void *existing_holder = nullptr) { void *src = const_cast(_src); if (src == nullptr) return none().inc_ref(); auto &internals = get_internals(); auto it = internals.registered_types_cpp.find(std::type_index(*type_info)); if (it == internals.registered_types_cpp.end()) { type_info = type_info_backup; it = internals.registered_types_cpp.find(std::type_index(*type_info)); } if (it == internals.registered_types_cpp.end()) { std::string tname = type_info->name(); detail::clean_type_id(tname); std::string msg = "Unregistered type : " + tname; PyErr_SetString(PyExc_TypeError, msg.c_str()); return handle(); } auto tinfo = (const detail::type_info *) it->second; auto it_instances = internals.registered_instances.equal_range(src); for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) { auto instance_type = detail::get_type_info(Py_TYPE(it_i->second)); if (instance_type && instance_type == tinfo) return handle((PyObject *) it_i->second).inc_ref(); } auto inst = reinterpret_steal(PyType_GenericAlloc(tinfo->type, 0)); auto wrapper = (instance *) inst.ptr(); wrapper->value = nullptr; wrapper->owned = false; switch (policy) { case return_value_policy::automatic: case return_value_policy::take_ownership: wrapper->value = src; wrapper->owned = true; break; case return_value_policy::automatic_reference: case return_value_policy::reference: wrapper->value = src; wrapper->owned = false; break; case return_value_policy::copy: if (copy_constructor) wrapper->value = copy_constructor(src); else throw cast_error("return_value_policy = copy, but the " "object is non-copyable!"); wrapper->owned = true; break; case return_value_policy::move: if (move_constructor) wrapper->value = move_constructor(src); else if (copy_constructor) wrapper->value = copy_constructor(src); else throw cast_error("return_value_policy = move, but the " "object is neither movable nor copyable!"); wrapper->owned = true; break; case return_value_policy::reference_internal: wrapper->value = src; wrapper->owned = false; detail::keep_alive_impl(inst, parent); break; default: throw cast_error("unhandled return_value_policy: should not happen!"); } tinfo->init_holder(inst.ptr(), existing_holder); internals.registered_instances.emplace(wrapper->value, inst.ptr()); return inst.release(); } protected: const type_info *typeinfo = nullptr; void *value = nullptr; object temp; }; /* Determine suitable casting operator */ template using cast_op_type = typename std::conditional::type>::value, typename std::add_pointer>::type, typename std::add_lvalue_reference>::type>::type; // std::is_copy_constructible isn't quite enough: it lets std::vector (and similar) through when // T is non-copyable, but code containing such a copy constructor fails to actually compile. template struct is_copy_constructible : std::is_copy_constructible {}; // Specialization for types that appear to be copy constructible but also look like stl containers // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if // so, copy constructability depends on whether the value_type is copy constructible. template struct is_copy_constructible::value && std::is_same::value >> : std::is_copy_constructible {}; /// Generic type caster for objects stored on the heap template class type_caster_base : public type_caster_generic { using itype = intrinsic_t; public: static PYBIND11_DESCR name() { return type_descr(_()); } type_caster_base() : type_caster_base(typeid(type)) { } explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { } static handle cast(const itype &src, return_value_policy policy, handle parent) { if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) policy = return_value_policy::copy; return cast(&src, policy, parent); } static handle cast(itype &&src, return_value_policy, handle parent) { return cast(&src, return_value_policy::move, parent); } static handle cast(const itype *src, return_value_policy policy, handle parent) { return type_caster_generic::cast( src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type), make_copy_constructor(src), make_move_constructor(src)); } static handle cast_holder(const itype *src, const void *holder) { return type_caster_generic::cast( src, return_value_policy::take_ownership, {}, src ? &typeid(*src) : nullptr, &typeid(type), nullptr, nullptr, holder); } template using cast_op_type = pybind11::detail::cast_op_type; operator itype*() { return (type *) value; } operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); } protected: typedef void *(*Constructor)(const void *stream); #if !defined(_MSC_VER) /* Only enabled when the types are {copy,move}-constructible *and* when the type does not have a private operator new implementaton. */ template ::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) { return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; } template static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) { return [](const void *arg) -> void * { return (void *) new T(std::move(*const_cast(reinterpret_cast(arg)))); }; } #else /* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations. Use a workaround that only tests for constructibility for now. */ template ::value>> static Constructor make_copy_constructor(const T *value) { return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; } template ::value>> static Constructor make_move_constructor(const T *value) { return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; } #endif static Constructor make_copy_constructor(...) { return nullptr; } static Constructor make_move_constructor(...) { return nullptr; } }; template class type_caster : public type_caster_base { }; template using make_caster = type_caster>; // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T template typename make_caster::template cast_op_type cast_op(make_caster &caster) { return caster.operator typename make_caster::template cast_op_type(); } template typename make_caster::template cast_op_type cast_op(make_caster &&caster) { return cast_op(caster); } template class type_caster> : public type_caster_base { public: static handle cast(const std::reference_wrapper &src, return_value_policy policy, handle parent) { return type_caster_base::cast(&src.get(), policy, parent); } template using cast_op_type = std::reference_wrapper; operator std::reference_wrapper() { return std::ref(*((type *) this->value)); } }; #define PYBIND11_TYPE_CASTER(type, py_name) \ protected: \ type value; \ public: \ static PYBIND11_DESCR name() { return type_descr(py_name); } \ static handle cast(const type *src, return_value_policy policy, handle parent) { \ if (!src) return none().release(); \ return cast(*src, policy, parent); \ } \ operator type*() { return &value; } \ operator type&() { return value; } \ template using cast_op_type = pybind11::detail::cast_op_type<_T> template using is_std_char_type = any_of< std::is_same, /* std::string */ std::is_same, /* std::u16string */ std::is_same, /* std::u32string */ std::is_same /* std::wstring */ >; template struct type_caster::value && !is_std_char_type::value>> { using _py_type_0 = conditional_t; using _py_type_1 = conditional_t::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>; using py_type = conditional_t::value, double, _py_type_1>; public: bool load(handle src, bool convert) { py_type py_value; if (!src) return false; if (std::is_floating_point::value) { if (convert || PyFloat_Check(src.ptr())) py_value = (py_type) PyFloat_AsDouble(src.ptr()); else return false; } else if (sizeof(T) <= sizeof(long)) { if (PyFloat_Check(src.ptr())) return false; if (std::is_signed::value) py_value = (py_type) PyLong_AsLong(src.ptr()); else py_value = (py_type) PyLong_AsUnsignedLong(src.ptr()); } else { if (PyFloat_Check(src.ptr())) return false; if (std::is_signed::value) py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr()); else py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr()); } if ((py_value == (py_type) -1 && PyErr_Occurred()) || (std::is_integral::value && sizeof(py_type) != sizeof(T) && (py_value < (py_type) std::numeric_limits::min() || py_value > (py_type) std::numeric_limits::max()))) { #if PY_VERSION_HEX < 0x03000000 bool type_error = PyErr_ExceptionMatches(PyExc_SystemError); #else bool type_error = PyErr_ExceptionMatches(PyExc_TypeError); #endif PyErr_Clear(); if (type_error && convert && PyNumber_Check(src.ptr())) { auto tmp = reinterpret_borrow(std::is_floating_point::value ? PyNumber_Float(src.ptr()) : PyNumber_Long(src.ptr())); PyErr_Clear(); return load(tmp, false); } return false; } value = (T) py_value; return true; } static handle cast(T src, return_value_policy /* policy */, handle /* parent */) { if (std::is_floating_point::value) { return PyFloat_FromDouble((double) src); } else if (sizeof(T) <= sizeof(long)) { if (std::is_signed::value) return PyLong_FromLong((long) src); else return PyLong_FromUnsignedLong((unsigned long) src); } else { if (std::is_signed::value) return PyLong_FromLongLong((long long) src); else return PyLong_FromUnsignedLongLong((unsigned long long) src); } } PYBIND11_TYPE_CASTER(T, _::value>("int", "float")); }; template struct void_caster { public: bool load(handle, bool) { return false; } static handle cast(T, return_value_policy /* policy */, handle /* parent */) { return none().inc_ref(); } PYBIND11_TYPE_CASTER(T, _("None")); }; template <> class type_caster : public void_caster {}; template <> class type_caster : public type_caster { public: using type_caster::cast; bool load(handle h, bool) { if (!h) { return false; } else if (h.is_none()) { value = nullptr; return true; } /* Check if this is a capsule */ if (isinstance(h)) { value = reinterpret_borrow(h); return true; } /* Check if this is a C++ type */ if (get_type_info((PyTypeObject *) h.get_type().ptr())) { value = ((instance *) h.ptr())->value; return true; } /* Fail */ return false; } static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { if (ptr) return capsule(ptr).release(); else return none().inc_ref(); } template using cast_op_type = void*&; operator void *&() { return value; } static PYBIND11_DESCR name() { return type_descr(_("capsule")); } private: void *value = nullptr; }; template <> class type_caster : public type_caster { }; template <> class type_caster { public: bool load(handle src, bool) { if (!src) return false; else if (src.ptr() == Py_True) { value = true; return true; } else if (src.ptr() == Py_False) { value = false; return true; } else return false; } static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { return handle(src ? Py_True : Py_False).inc_ref(); } PYBIND11_TYPE_CASTER(bool, _("bool")); }; // Helper class for UTF-{8,16,32} C++ stl strings: template struct type_caster, enable_if_t::value>> { // Simplify life by being able to assume standard char sizes (the standard only guarantees // minimums), but Python requires exact sizes static_assert(!std::is_same::value || sizeof(CharT) == 1, "Unsupported char size != 1"); static_assert(!std::is_same::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2"); static_assert(!std::is_same::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4"); // wchar_t can be either 16 bits (Windows) or 32 (everywhere else) static_assert(!std::is_same::value || sizeof(CharT) == 2 || sizeof(CharT) == 4, "Unsupported wchar_t size != 2/4"); static constexpr size_t UTF_N = 8 * sizeof(CharT); using StringType = std::basic_string; bool load(handle src, bool) { #if PY_MAJOR_VERSION < 3 object temp; #endif handle load_src = src; if (!src) { return false; } else if (!PyUnicode_Check(load_src.ptr())) { #if PY_MAJOR_VERSION >= 3 return false; // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false #else if (!PYBIND11_BYTES_CHECK(load_src.ptr())) return false; temp = reinterpret_steal(PyUnicode_FromObject(load_src.ptr())); if (!temp) { PyErr_Clear(); return false; } load_src = temp; #endif } object utfNbytes = reinterpret_steal(PyUnicode_AsEncodedString( load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr)); if (!utfNbytes) { PyErr_Clear(); return false; } const CharT *buffer = reinterpret_cast(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr())); size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT); if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32 value = StringType(buffer, length); return true; } static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) { const char *buffer = reinterpret_cast(src.c_str()); ssize_t nbytes = ssize_t(src.size() * sizeof(CharT)); handle s = decode_utfN(buffer, nbytes); if (!s) throw error_already_set(); return s; } PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME)); private: static handle decode_utfN(const char *buffer, ssize_t nbytes) { #if !defined(PYPY_VERSION) return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) : UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) : PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr); #else // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a // non-const char * arguments, which is also a nuissance, so bypass the whole thing by just // passing the encoding as a string value, which works properly: return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr); #endif } }; // Type caster for C-style strings. We basically use a std::string type caster, but also add the // ability to use None as a nullptr char* (which the string caster doesn't allow). template struct type_caster::value>> { using StringType = std::basic_string; using StringCaster = type_caster; StringCaster str_caster; bool none = false; public: bool load(handle src, bool convert) { if (!src) return false; if (src.is_none()) { // Defer accepting None to other overloads (if we aren't in convert mode): if (!convert) return false; none = true; return true; } return str_caster.load(src, convert); } static handle cast(const CharT *src, return_value_policy policy, handle parent) { if (src == nullptr) return pybind11::none().inc_ref(); return StringCaster::cast(StringType(src), policy, parent); } static handle cast(CharT src, return_value_policy policy, handle parent) { if (std::is_same::value) { handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr); if (!s) throw error_already_set(); return s; } return StringCaster::cast(StringType(1, src), policy, parent); } operator CharT*() { return none ? nullptr : const_cast(static_cast(str_caster).c_str()); } operator CharT() { if (none) throw value_error("Cannot convert None to a character"); auto &value = static_cast(str_caster); size_t str_len = value.size(); if (str_len == 0) throw value_error("Cannot convert empty string to a character"); // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that // is too high, and one for multiple unicode characters (caught later), so we need to figure // out how long the first encoded character is in bytes to distinguish between these two // errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those // can fit into a single char value. if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) { unsigned char v0 = static_cast(value[0]); size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127 (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence 4; // 0b11110xxx - start of 4-byte sequence if (char0_bytes == str_len) { // If we have a 128-255 value, we can decode it into a single char: if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx return static_cast(((v0 & 3) << 6) + (static_cast(value[1]) & 0x3F)); } // Otherwise we have a single character, but it's > U+00FF throw value_error("Character code point not in range(0x100)"); } } // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a // surrogate pair with total length 2 instantly indicates a range error (but not a "your // string was too long" error). else if (StringCaster::UTF_N == 16 && str_len == 2) { char16_t v0 = static_cast(value[0]); if (v0 >= 0xD800 && v0 < 0xE000) throw value_error("Character code point not in range(0x10000)"); } if (str_len != 1) throw value_error("Expected a character, but multi-character string found"); return value[0]; } static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); } template using cast_op_type = typename std::remove_reference>::type; }; template class type_caster> { typedef std::pair type; public: bool load(handle src, bool convert) { if (!isinstance(src)) return false; const auto seq = reinterpret_borrow(src); if (seq.size() != 2) return false; return first.load(seq[0], convert) && second.load(seq[1], convert); } static handle cast(const type &src, return_value_policy policy, handle parent) { auto o1 = reinterpret_steal(make_caster::cast(src.first, policy, parent)); auto o2 = reinterpret_steal(make_caster::cast(src.second, policy, parent)); if (!o1 || !o2) return handle(); tuple result(2); PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr()); PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr()); return result.release(); } static PYBIND11_DESCR name() { return type_descr( _("Tuple[") + make_caster::name() + _(", ") + make_caster::name() + _("]") ); } template using cast_op_type = type; operator type() { return type(cast_op(first), cast_op(second)); } protected: make_caster first; make_caster second; }; template class type_caster> { using type = std::tuple; using indices = make_index_sequence; static constexpr auto size = sizeof...(Tuple); public: bool load(handle src, bool convert) { if (!isinstance(src)) return false; const auto seq = reinterpret_borrow(src); if (seq.size() != size) return false; return load_impl(seq, convert, indices{}); } static handle cast(const type &src, return_value_policy policy, handle parent) { return cast_impl(src, policy, parent, indices{}); } static PYBIND11_DESCR name() { return type_descr(_("Tuple[") + detail::concat(make_caster::name()...) + _("]")); } template using cast_op_type = type; operator type() { return implicit_cast(indices{}); } protected: template type implicit_cast(index_sequence) { return type(cast_op(std::get(value))...); } static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; } template bool load_impl(const sequence &seq, bool convert, index_sequence) { for (bool r : {std::get(value).load(seq[Is], convert)...}) if (!r) return false; return true; } static handle cast_impl(const type &, return_value_policy, handle, index_sequence<>) { return tuple().release(); } /* Implementation: Convert a C++ tuple into a Python tuple */ template static handle cast_impl(const type &src, return_value_policy policy, handle parent, index_sequence) { std::array entries {{ reinterpret_steal(make_caster::cast(std::get(src), policy, parent))... }}; for (const auto &entry: entries) if (!entry) return handle(); tuple result(size); int counter = 0; for (auto & entry: entries) PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); return result.release(); } std::tuple...> value; }; /// Helper class which abstracts away certain actions. Users can provide specializations for /// custom holders, but it's only necessary if the type has a non-standard interface. template struct holder_helper { static auto get(const T &p) -> decltype(p.get()) { return p.get(); } }; /// Type caster for holder types like std::shared_ptr, etc. template struct copyable_holder_caster : public type_caster_base { public: using base = type_caster_base; using base::base; using base::cast; using base::typeinfo; using base::value; using base::temp; PYBIND11_NOINLINE bool load(handle src, bool convert) { return load(src, convert, Py_TYPE(src.ptr())); } bool load(handle src, bool convert, PyTypeObject *tobj) { if (!src || !typeinfo) return false; if (src.is_none()) { value = nullptr; return true; } if (typeinfo->default_holder) throw cast_error("Unable to load a custom holder type from a default-holder instance"); if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ /* Check if we can safely perform a reinterpret-style cast */ if (PyType_IsSubtype(tobj, typeinfo->type)) return load_value_and_holder(src); } else { /* Case 2: multiple inheritance */ /* Check if we can safely perform a reinterpret-style cast */ if (tobj == typeinfo->type) return load_value_and_holder(src); /* If this is a python class, also check the parents recursively */ auto const &type_dict = get_internals().registered_types_py; bool new_style_class = PyType_Check((PyObject *) tobj); if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { auto parents = reinterpret_borrow(tobj->tp_bases); for (handle parent : parents) { bool result = load(src, convert, (PyTypeObject *) parent.ptr()); if (result) return true; } } if (try_implicit_casts(src, convert)) return true; } if (convert) { for (auto &converter : typeinfo->implicit_conversions) { temp = reinterpret_steal(converter(src.ptr(), typeinfo->type)); if (load(temp, false)) return true; } } return false; } bool load_value_and_holder(handle src) { auto inst = (instance *) src.ptr(); value = (void *) inst->value; if (inst->holder_constructed) { holder = inst->holder; return true; } else { throw cast_error("Unable to cast from non-held to held instance (T& to Holder) " #if defined(NDEBUG) "(compile in debug mode for type information)"); #else "of type '" + type_id() + "''"); #endif } } template ::value, int> = 0> bool try_implicit_casts(handle, bool) { return false; } template ::value, int> = 0> bool try_implicit_casts(handle src, bool convert) { for (auto &cast : typeinfo->implicit_casts) { copyable_holder_caster sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); holder = holder_type(sub_caster.holder, (type *) value); return true; } } return false; } explicit operator type*() { return this->value; } explicit operator type&() { return *(this->value); } explicit operator holder_type*() { return &holder; } // Workaround for Intel compiler bug // see pybind11 issue 94 #if defined(__ICC) || defined(__INTEL_COMPILER) operator holder_type&() { return holder; } #else explicit operator holder_type&() { return holder; } #endif static handle cast(const holder_type &src, return_value_policy, handle) { const auto *ptr = holder_helper::get(src); return type_caster_base::cast_holder(ptr, &src); } protected: holder_type holder; }; /// Specialize for the common std::shared_ptr, so users don't need to template class type_caster> : public copyable_holder_caster> { }; template struct move_only_holder_caster { static handle cast(holder_type &&src, return_value_policy, handle) { auto *ptr = holder_helper::get(src); return type_caster_base::cast_holder(ptr, &src); } static PYBIND11_DESCR name() { return type_caster_base::name(); } }; template class type_caster> : public move_only_holder_caster> { }; template using type_caster_holder = conditional_t::value, copyable_holder_caster, move_only_holder_caster>; template struct always_construct_holder { static constexpr bool value = Value; }; /// Create a specialization for custom holder types (silently ignores std::shared_ptr) #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \ namespace pybind11 { namespace detail { \ template \ struct always_construct_holder : always_construct_holder { }; \ template \ class type_caster::value>> \ : public type_caster_holder { }; \ }} // PYBIND11_DECLARE_HOLDER_TYPE holder types: template struct is_holder_type : std::is_base_of, detail::type_caster> {}; // Specialization for always-supported unique_ptr holders: template struct is_holder_type> : std::true_type {}; template struct handle_type_name { static PYBIND11_DESCR name() { return _(); } }; template <> struct handle_type_name { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } }; template <> struct handle_type_name { static PYBIND11_DESCR name() { return _("*args"); } }; template <> struct handle_type_name { static PYBIND11_DESCR name() { return _("**kwargs"); } }; template struct pyobject_caster { template ::value, int> = 0> bool load(handle src, bool /* convert */) { value = src; return static_cast(value); } template ::value, int> = 0> bool load(handle src, bool /* convert */) { if (!isinstance(src)) return false; value = reinterpret_borrow(src); return true; } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name::name()); }; template class type_caster::value>> : public pyobject_caster { }; // Our conditions for enabling moving are quite restrictive: // At compile time: // - T needs to be a non-const, non-pointer, non-reference type // - type_caster::operator T&() must exist // - the type must be move constructible (obviously) // At run-time: // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it // must have ref_count() == 1)h // If any of the above are not satisfied, we fall back to copying. template using move_is_plain_type = satisfies_none_of; template struct move_always : std::false_type {}; template struct move_always, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template struct move_if_unreferenced : std::false_type {}; template struct move_if_unreferenced, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template using move_never = none_of, move_if_unreferenced>; // Detect whether returning a `type` from a cast on type's type_caster is going to result in a // reference or pointer to a local variable of the type_caster. Basically, only // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe; // everything else returns a reference/pointer to a local variable. template using cast_is_temporary_value_reference = bool_constant< (std::is_reference::value || std::is_pointer::value) && !std::is_base_of>::value >; // When a value returned from a C++ function is being cast back to Python, we almost always want to // force `policy = move`, regardless of the return value policy the function/method was declared // with. Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by // specializing this struct. template struct return_value_policy_override { static return_value_policy policy(return_value_policy p) { return !std::is_lvalue_reference::value && !std::is_pointer::value ? return_value_policy::move : p; } }; // Basic python -> C++ casting; throws if casting fails template type_caster &load_type(type_caster &conv, const handle &handle) { if (!conv.load(handle, true)) { #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)"); #else throw cast_error("Unable to cast Python instance of type " + (std::string) str(handle.get_type()) + " to C++ type '" + type_id() + "''"); #endif } return conv; } // Wrapper around the above that also constructs and returns a type_caster template make_caster load_type(const handle &handle) { make_caster conv; load_type(conv, handle); return conv; } NAMESPACE_END(detail) // pytype -> C++ type template ::value, int> = 0> T cast(const handle &handle) { using namespace detail; static_assert(!cast_is_temporary_value_reference::value, "Unable to cast type to reference: value is local to type caster"); return cast_op(load_type(handle)); } // pytype -> pytype (calls converting constructor) template ::value, int> = 0> T cast(const handle &handle) { return T(reinterpret_borrow(handle)); } // C++ type -> py::object template ::value, int> = 0> object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference, handle parent = handle()) { if (policy == return_value_policy::automatic) policy = std::is_pointer::value ? return_value_policy::take_ownership : return_value_policy::copy; else if (policy == return_value_policy::automatic_reference) policy = std::is_pointer::value ? return_value_policy::reference : return_value_policy::copy; return reinterpret_steal(detail::make_caster::cast(value, policy, parent)); } template T handle::cast() const { return pybind11::cast(*this); } template <> inline void handle::cast() const { return; } template detail::enable_if_t::value, T> move(object &&obj) { if (obj.ref_count() > 1) #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references" " (compile in debug mode for details)"); #else throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) + " instance to C++ " + type_id() + " instance: instance has multiple references"); #endif // Move into a temporary and return that, because the reference may be a local value of `conv` T ret = std::move(detail::load_type(obj).operator T&()); return ret; } // Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does: // - If we have to move (because T has no copy constructor), do it. This will fail if the moved // object has multiple references, but trying to copy will fail to compile. // - If both movable and copyable, check ref count: if 1, move; otherwise copy // - Otherwise (not movable), copy. template detail::enable_if_t::value, T> cast(object &&object) { return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { if (object.ref_count() > 1) return cast(object); else return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { return cast(object); } template T object::cast() const & { return pybind11::cast(*this); } template T object::cast() && { return pybind11::cast(std::move(*this)); } template <> inline void object::cast() const & { return; } template <> inline void object::cast() && { return; } NAMESPACE_BEGIN(detail) // Declared in pytypes.h: template ::value, int>> object object_or_cast(T &&o) { return pybind11::cast(std::forward(o)); } struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro template using overload_caster_t = conditional_t< cast_is_temporary_value_reference::value, make_caster, overload_unused>; // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then // store the result in the given variable. For other types, this is a no-op. template enable_if_t::value, T> cast_ref(object &&o, make_caster &caster) { return cast_op(load_type(caster, o)); } template enable_if_t::value, T> cast_ref(object &&, overload_unused &) { pybind11_fail("Internal error: cast_ref fallback invoked"); } // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in // cases where pybind11::cast is valid. template enable_if_t::value, T> cast_safe(object &&o) { return pybind11::cast(std::move(o)); } template enable_if_t::value, T> cast_safe(object &&) { pybind11_fail("Internal error: cast_safe fallback invoked"); } template <> inline void cast_safe(object &&) {} NAMESPACE_END(detail) template tuple make_tuple(Args&&... args_) { const size_t size = sizeof...(Args); std::array args { { reinterpret_steal(detail::make_caster::cast( std::forward(args_), policy, nullptr))... } }; for (auto &arg_value : args) { if (!arg_value) { #if defined(NDEBUG) throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)"); #else throw cast_error("make_tuple(): unable to convert arguments of types '" + (std::string) type_id>() + "' to Python object"); #endif } } tuple result(size); int counter = 0; for (auto &arg_value : args) PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); return result; } /// \ingroup annotations /// Annotation for arguments struct arg { /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument. constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false) { } /// Assign a value to this argument template arg_v operator=(T &&value) const; /// Indicate that the type should not be converted in the type caster arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; } const char *name; ///< If non-null, this is a named kwargs argument bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!) }; /// \ingroup annotations /// Annotation for arguments with values struct arg_v : arg { private: template arg_v(arg &&base, T &&x, const char *descr = nullptr) : arg(base), value(reinterpret_steal( detail::make_caster::cast(x, return_value_policy::automatic, {}) )), descr(descr) #if !defined(NDEBUG) , type(type_id()) #endif { } public: /// Direct construction with name, default, and description template arg_v(const char *name, T &&x, const char *descr = nullptr) : arg_v(arg(name), std::forward(x), descr) { } /// Called internally when invoking `py::arg("a") = value` template arg_v(const arg &base, T &&x, const char *descr = nullptr) : arg_v(arg(base), std::forward(x), descr) { } /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg& arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; } /// The default value object value; /// The (optional) description of the default value const char *descr; #if !defined(NDEBUG) /// The C++ type name of the default value (only available when compiled in debug mode) std::string type; #endif }; template arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward(value)}; } /// Alias for backward compatibility -- to be removed in version 2.0 template using arg_t = arg_v; inline namespace literals { /** \rst String literal version of `arg` \endrst */ constexpr arg operator"" _a(const char *name, size_t) { return arg(name); } } NAMESPACE_BEGIN(detail) // forward declaration struct function_record; /// Internal data associated with a single function call struct function_call { function_call(function_record &f, handle p); // Implementation in attr.h /// The function data: const function_record &func; /// Arguments passed to the function: std::vector args; /// The `convert` value the arguments should be loaded with std::vector args_convert; /// The parent, if any handle parent; }; /// Helper class which loads arguments for C++ functions called from Python template class argument_loader { using indices = make_index_sequence; template using argument_is_args = std::is_same, args>; template using argument_is_kwargs = std::is_same, kwargs>; // Get args/kwargs argument positions relative to the end of the argument list: static constexpr auto args_pos = constexpr_first() - (int) sizeof...(Args), kwargs_pos = constexpr_first() - (int) sizeof...(Args); static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1; static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function"); public: static constexpr bool has_kwargs = kwargs_pos < 0; static constexpr bool has_args = args_pos < 0; static PYBIND11_DESCR arg_names() { return detail::concat(make_caster::name()...); } bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); } template enable_if_t::value, Return> call(Func &&f) { return call_impl(std::forward(f), indices{}); } template enable_if_t::value, void_type> call(Func &&f) { call_impl(std::forward(f), indices{}); return void_type(); } private: static bool load_impl_sequence(function_call &, index_sequence<>) { return true; } template bool load_impl_sequence(function_call &call, index_sequence) { for (bool r : {std::get(value).load(call.args[Is], call.args_convert[Is])...}) if (!r) return false; return true; } template Return call_impl(Func &&f, index_sequence) { return std::forward(f)(cast_op(std::get(value))...); } std::tuple...> value; }; /// Helper class which collects only positional arguments for a Python function call. /// A fancier version below can collect any argument, but this one is optimal for simple calls. template class simple_collector { public: template explicit simple_collector(Ts &&...values) : m_args(pybind11::make_tuple(std::forward(values)...)) { } const tuple &args() const & { return m_args; } dict kwargs() const { return {}; } tuple args() && { return std::move(m_args); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); if (!result) throw error_already_set(); return reinterpret_steal(result); } private: tuple m_args; }; /// Helper class which collects positional, keyword, * and ** arguments for a Python function call template class unpacking_collector { public: template explicit unpacking_collector(Ts &&...values) { // Tuples aren't (easily) resizable so a list is needed for collection, // but the actual function call strictly requires a tuple. auto args_list = list(); int _[] = { 0, (process(args_list, std::forward(values)), 0)... }; ignore_unused(_); m_args = std::move(args_list); } const tuple &args() const & { return m_args; } const dict &kwargs() const & { return m_kwargs; } tuple args() && { return std::move(m_args); } dict kwargs() && { return std::move(m_kwargs); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); if (!result) throw error_already_set(); return reinterpret_steal(result); } private: template void process(list &args_list, T &&x) { auto o = reinterpret_steal(detail::make_caster::cast(std::forward(x), policy, {})); if (!o) { #if defined(NDEBUG) argument_cast_error(); #else argument_cast_error(std::to_string(args_list.size()), type_id()); #endif } args_list.append(o); } void process(list &args_list, detail::args_proxy ap) { for (const auto &a : ap) args_list.append(a); } void process(list &/*args_list*/, arg_v a) { if (!a.name) #if defined(NDEBUG) nameless_argument_error(); #else nameless_argument_error(a.type); #endif if (m_kwargs.contains(a.name)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(a.name); #endif } if (!a.value) { #if defined(NDEBUG) argument_cast_error(); #else argument_cast_error(a.name, a.type); #endif } m_kwargs[a.name] = a.value; } void process(list &/*args_list*/, detail::kwargs_proxy kp) { if (!kp) return; for (const auto &k : reinterpret_borrow(kp)) { if (m_kwargs.contains(k.first)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(str(k.first)); #endif } m_kwargs[k.first] = k.second; } } [[noreturn]] static void nameless_argument_error() { throw type_error("Got kwargs without a name; only named arguments " "may be passed via py::arg() to a python function call. " "(compile in debug mode for details)"); } [[noreturn]] static void nameless_argument_error(std::string type) { throw type_error("Got kwargs without a name of type '" + type + "'; only named " "arguments may be passed via py::arg() to a python function call. "); } [[noreturn]] static void multiple_values_error() { throw type_error("Got multiple values for keyword argument " "(compile in debug mode for details)"); } [[noreturn]] static void multiple_values_error(std::string name) { throw type_error("Got multiple values for keyword argument '" + name + "'"); } [[noreturn]] static void argument_cast_error() { throw cast_error("Unable to convert call argument to Python object " "(compile in debug mode for details)"); } [[noreturn]] static void argument_cast_error(std::string name, std::string type) { throw cast_error("Unable to convert call argument '" + name + "' of type '" + type + "' to Python object"); } private: tuple m_args; dict m_kwargs; }; /// Collect only positional arguments for a Python function call template ...>::value>> simple_collector collect_arguments(Args &&...args) { return simple_collector(std::forward(args)...); } /// Collect all arguments, including keywords and unpacking (only instantiated when needed) template ...>::value>> unpacking_collector collect_arguments(Args &&...args) { // Following argument order rules for generalized unpacking according to PEP 448 static_assert( constexpr_last() < constexpr_first() && constexpr_last() < constexpr_first(), "Invalid function call: positional args must precede keywords and ** unpacking; " "* unpacking must precede ** unpacking" ); return unpacking_collector(std::forward(args)...); } template template object object_api::operator()(Args &&...args) const { return detail::collect_arguments(std::forward(args)...).call(derived().ptr()); } template template object object_api::call(Args &&...args) const { return operator()(std::forward(args)...); } NAMESPACE_END(detail) #define PYBIND11_MAKE_OPAQUE(Type) \ namespace pybind11 { namespace detail { \ template<> class type_caster : public type_caster_base { }; \ }} NAMESPACE_END(pybind11)