from typing import Dict from ray.rllib.env.base_env import BaseEnv from ray.rllib.evaluation import RolloutWorker from ray.rllib.evaluation.episode import Episode from ray.rllib.evaluation.episode_v2 import EpisodeV2 from ray.rllib.policy import Policy from ray.rllib.utils.typing import PolicyID import gymnasium as gym import minigrid import numpy as np import ray from ray.tune import register_env from ray.rllib.algorithms.ppo import PPOConfig from ray.rllib.algorithms.dqn.dqn import DQNConfig from ray.rllib.algorithms.callbacks import DefaultCallbacks from ray.tune.logger import pretty_print from ray.rllib.models import ModelCatalog from ray.rllib.utils.torch_utils import FLOAT_MIN from ray.rllib.models.preprocessors import get_preprocessor from MaskModels import TorchActionMaskModel from Wrapper import OneHotWrapper, MiniGridEnvWrapper from helpers import extract_keys, parse_arguments, create_shield_dict, create_log_dir import matplotlib.pyplot as plt class MyCallbacks(DefaultCallbacks): def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: # print(F"Epsiode started Environment: {base_env.get_sub_environments()}") env = base_env.get_sub_environments()[0] episode.user_data["count"] = 0 # print(env.printGrid()) # print(env.action_space.n) # print(env.actions) # print(env.mission) # print(env.observation_space) # img = env.get_frame() # plt.imshow(img) # plt.show() def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy] | None = None, episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: episode.user_data["count"] = episode.user_data["count"] + 1 env = base_env.get_sub_environments()[0] #print(env.printGrid()) def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2 | Exception, env_index: int | None = None, **kwargs) -> None: # print(F"Epsiode end Environment: {base_env.get_sub_environments()}") env = base_env.get_sub_environments()[0] # print(env.printGrid()) # print(episode.user_data["count"]) def env_creater_custom(config): framestack = config.get("framestack", 4) shield = config.get("shield", {}) name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") framestack = config.get("framestack", 4) env = gym.make(name) keys = extract_keys(env) env = MiniGridEnvWrapper(env, shield=shield, keys=keys) # env = minigrid.wrappers.ImgObsWrapper(env) # env = ImgObsWrapper(env) env = OneHotWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env def register_custom_minigrid_env(args): env_name = "mini-grid" register_env(env_name, env_creater_custom) ModelCatalog.register_custom_model( "pa_model", TorchActionMaskModel ) def ppo(args): ray.init(num_cpus=1) register_custom_minigrid_env(args) shield_dict = create_shield_dict(args) config = (PPOConfig() .rollouts(num_rollout_workers=1) .resources(num_gpus=0) .environment(env="mini-grid", env_config={"shield": shield_dict, "name": args.env}) .framework("torch") .callbacks(MyCallbacks) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": "ray.tune.logger.TBXLogger", "logdir": create_log_dir(args) }) .training(_enable_learner_api=False ,model={ "custom_model": "pa_model", "custom_model_config" : {"shield": shield_dict, "no_masking": args.no_masking} })) algo =( config.build() ) # while not terminated and not truncated: # action = algo.compute_single_action(obs) # obs, reward, terminated, truncated = env.step(action) for i in range(30): result = algo.train() print(pretty_print(result)) if i % 5 == 0: checkpoint_dir = algo.save() print(f"Checkpoint saved in directory {checkpoint_dir}") ray.shutdown() def dqn(args): register_custom_minigrid_env(args) shield_dict = create_shield_dict(args) config = DQNConfig() config = config.resources(num_gpus=0) config = config.rollouts(num_rollout_workers=1) config = config.environment(env="mini-grid", env_config={"shield": shield_dict, "name": args.env }) config = config.framework("torch") config = config.callbacks(MyCallbacks) config = config.rl_module(_enable_rl_module_api = False) config = config.debugging(logger_config={ "type": "ray.tune.logger.TBXLogger", "logdir": create_log_dir(args) }) config = config.training(hiddens=[], dueling=False, model={ "custom_model": "pa_model", "custom_model_config" : {"shield": shield_dict, "no_masking": args.no_masking} }) algo = ( config.build() ) for i in range(args.iterations): result = algo.train() print(pretty_print(result)) if i % 5 == 0: print("Saving checkpoint") checkpoint_dir = algo.save() print(f"Checkpoint saved in directory {checkpoint_dir}") ray.shutdown() def main(): import argparse args = parse_arguments(argparse) if args.algorithm == "ppo": ppo(args) elif args.algorithm == "dqn": dqn(args) if __name__ == '__main__': main()