import stormpy import stormpy.core import stormpy.simulator import stormpy.shields import stormpy.examples import stormpy.examples.files import random """ Simulating a model with the usage of a pre shield """ def example_pre_shield_simulator(): path = stormpy.examples.files.prism_mdp_lava_simple formula_str = " Pmax=? [G !\"AgentIsInLavaAndNotDone\"]" program = stormpy.parse_prism_program(path) formulas = stormpy.parse_properties_for_prism_program(formula_str, program) options = stormpy.BuilderOptions([p.raw_formula for p in formulas]) options.set_build_state_valuations(True) options.set_build_choice_labels(True) options.set_build_all_labels() model = stormpy.build_sparse_model_with_options(program, options) initial_state = model.initial_states[0] assert initial_state == 0 result = stormpy.model_checking(model, formulas[0], extract_scheduler=True) assert result.has_scheduler assert result.has_shield shield = result.shield pre_scheduler = shield.construct() simulator = stormpy.simulator.create_simulator(model, seed=42) final_outcomes = dict() for n in range(1000): while not simulator.is_done(): current_state = simulator.get_current_state() choices = pre_scheduler.get_choice(current_state).choice_map index = random.randint(0, len(choices) - 1) selected_action = choices[index] state_string = model.state_valuations.get_string(current_state) print(F"Simulator is in state {state_string}. Allowed Choices are {choices}. Selected Action: {selected_action}") observation, reward = simulator.step(selected_action[1]) if observation not in final_outcomes: final_outcomes[observation] = 1 else: final_outcomes[observation] += 1 simulator.restart() if __name__ == '__main__': example_pre_shield_simulator()