import gymnasium as gym import minigrid import ray from ray.tune import register_env from ray.tune.experiment.trial import Trial from ray import tune, air from ray.rllib.algorithms.ppo import PPOConfig from ray.tune.logger import UnifiedLogger from ray.rllib.models import ModelCatalog from ray.tune.logger import pretty_print, UnifiedLogger, CSVLogger from ray.rllib.algorithms.algorithm import Algorithm from ray.air import session from torch_action_mask_model import TorchActionMaskModel from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper from helpers import parse_arguments, create_log_dir, ShieldingConfig, test_name from shieldhandlers import MiniGridShieldHandler, create_shield_query from torch.utils.tensorboard import SummaryWriter from callbacks import MyCallbacks def shielding_env_creater(config): name = config.get("name", "MiniGrid-LavaCrossingS9N3-v0") framestack = config.get("framestack", 4) args = config.get("args", None) args.grid_path = F"{args.expname}_{args.grid_path}_{config.worker_index}.txt" args.prism_path = F"{args.expname}_{args.prism_path}_{config.worker_index}.prism" shielding = config.get("shielding", False) shield_creator = MiniGridShieldHandler(grid_file=args.grid_path, grid_to_prism_path=args.grid_to_prism_binary_path, prism_path=args.prism_path, formula=args.formula) env = gym.make(name, randomize_start=True) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=shielding != ShieldingConfig.Disabled) env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env def register_minigrid_shielding_env(args): env_name = "mini-grid-shielding" register_env(env_name, shielding_env_creater) ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel ) def trial_name_creator(trial : Trial): return "trial" def ppo(args): register_minigrid_shielding_env(args) logdir = args.log_dir config = (PPOConfig() .rollouts(num_rollout_workers=args.workers) .resources(num_gpus=0) .environment( env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training, },) .framework("torch") .callbacks(MyCallbacks) .evaluation(evaluation_config={ "evaluation_interval": 1, "evaluation_duration": 10, "evaluation_num_workers":1, "env": "mini-grid-shielding", "env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Evaluation}}) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": UnifiedLogger, "logdir": logdir }) .training(_enable_learner_api=False ,model={ "custom_model": "shielding_model" })) tuner = tune.Tuner("PPO", tune_config=tune.TuneConfig( metric="episode_reward_mean", mode="max", num_samples=1, trial_name_creator=trial_name_creator, ), run_config=air.RunConfig( stop = {"episode_reward_mean": 94, "timesteps_total": args.steps,}, checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=1, checkpoint_score_attribute="episode_reward_mean", ), storage_path=F"{logdir}", name=test_name(args), ) , param_space=config,) results = tuner.fit() best_result = results.get_best_result() import pprint metrics_to_print = [ "episode_reward_mean", "episode_reward_max", "episode_reward_min", "episode_len_mean", ] pprint.pprint({k: v for k, v in best_result.metrics.items() if k in metrics_to_print}) # algo = Algorithm.from_checkpoint(best_result.checkpoint) # eval_log_dir = F"{logdir}-eval" # writer = SummaryWriter(log_dir=eval_log_dir) # csv_logger = CSVLogger(config=config, logdir=eval_log_dir) # for i in range(args.evaluations): # eval_result = algo.evaluate() # print(pretty_print(eval_result)) # print(eval_result) # # logger.on_result(eval_result) # csv_logger.on_result(eval_result) # evaluation = eval_result['evaluation'] # epsiode_reward_mean = evaluation['episode_reward_mean'] # episode_len_mean = evaluation['episode_len_mean'] # print(epsiode_reward_mean) # writer.add_scalar("evaluation/episode_reward_mean", epsiode_reward_mean, i) # writer.add_scalar("evaluation/episode_len_mean", episode_len_mean, i) def main(): ray.init(num_cpus=3) import argparse args = parse_arguments(argparse) ppo(args) ray.shutdown() if __name__ == '__main__': main()