import gymnasium as gym import minigrid # import numpy as np # import ray from ray.tune import register_env from ray import tune, air from ray.rllib.algorithms.ppo import PPOConfig from ray.rllib.algorithms.dqn.dqn import DQNConfig # from ray.rllib.algorithms.callbacks import DefaultCallbacks from ray.tune.logger import pretty_print, TBXLogger, TBXLoggerCallback, DEFAULT_LOGGERS, UnifiedLogger from ray.rllib.models import ModelCatalog from TorchActionMaskModel import TorchActionMaskModel from Wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper from helpers import parse_arguments, create_log_dir, ShieldingConfig from ShieldHandlers import MiniGridShieldHandler, create_shield_query from callbacks import MyCallbacks import matplotlib.pyplot as plt from torch.utils.tensorboard import SummaryWriter def shielding_env_creater(config): name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") framestack = config.get("framestack", 4) args = config.get("args", None) args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" shielding = config.get("shielding", False) # if shielding: # assert(False) shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) env = gym.make(name) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=shielding) env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env def register_minigrid_shielding_env(args): env_name = "mini-grid-shielding" register_env(env_name, shielding_env_creater) ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel ) def ppo(args): register_minigrid_shielding_env(args) config = (PPOConfig() .rollouts(num_rollout_workers=args.workers) .resources(num_gpus=0) .environment( env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training}) .framework("torch") .callbacks(MyCallbacks) .evaluation(evaluation_config={ "evaluation_interval": 1, "evaluation_duration": 10, "evaluation_num_workers":1, "env": "mini-grid-shielding", "env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Evaluation}}) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": UnifiedLogger, "logdir": create_log_dir(args) }) .training(_enable_learner_api=False ,model={ "custom_model": "shielding_model" })) tuner = tune.Tuner("PPO", run_config=air.RunConfig( stop = {"episode_reward_mean": 50}, checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True), storage_path=F"{create_log_dir(args)}-tuner" ), param_space=config,) tuner.fit() iterations = args.iterations print(config.to_dict()) tune.run("PPO", config=config) # print(epsiode_reward_mean) # writer.add_scalar("evaluation/episode_reward", epsiode_reward_mean, i) def main(): import argparse args = parse_arguments(argparse) ppo(args) if __name__ == '__main__': main()