from . import core from .core import * from . import storage from .storage import * from ._config import * from .logic import * from pycarl import Variable # needed for building parametric models __version__ = "unknown" try: from _version import __version__ except ImportError: # We're running in a tree that doesn't have a _version.py, so we don't know what our version is. pass core._set_up("") def build_model(program, properties=None): """ Build a model from a symbolic description. :param PrismProgram program: Prism program to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Model in sparse representation. :rtype: SparseDtmc or SparseMdp """ if properties: formulae = [prop.raw_formula for prop in properties] intermediate = core._build_sparse_model_from_prism_program(program, formulae) else: intermediate = core._build_sparse_model_from_prism_program(program) assert not intermediate.supports_parameters if intermediate.model_type == ModelType.DTMC: return intermediate._as_dtmc() elif intermediate.model_type == ModelType.MDP: return intermediate._as_mdp() else: raise RuntimeError("Not supported non-parametric model constructed") def build_parametric_model(program, properties=None): """ Build a parametric model from a symbolic description. :param PrismProgram program: Prism program with open constants to translate into a parametric model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. :return: Parametric model in sparse representation. :rtype: SparseParametricDtmc or SparseParametricMdp """ if properties: formulae = [prop.raw_formula for prop in properties] else: formulae = [] intermediate = core._build_sparse_parametric_model_from_prism_program(program, formulae) assert intermediate.supports_parameters if intermediate.model_type == ModelType.DTMC: return intermediate._as_pdtmc() elif intermediate.model_type == ModelType.MDP: return intermediate._as_pmdp() else: raise RuntimeError("Not supported parametric model constructed") def build_model_from_drn(file): """ Build a model from the explicit DRN representation. :param String file: DRN file containing the model. :return: Model in sparse representation. :rtype: SparseDtmc or SparseMdp or SparseCTMC or SparseMA """ intermediate = core._build_sparse_model_from_drn(file) assert not intermediate.supports_parameters if intermediate.model_type == ModelType.DTMC: return intermediate._as_dtmc() elif intermediate.model_type == ModelType.MDP: return intermediate._as_mdp() elif intermediate.model_type == ModelType.CTMC: return intermediate._as_ctmc() elif intermediate.model_type == ModelType.MA: return intermediate._as_ma() else: raise RuntimeError("Not supported non-parametric model constructed") def build_parametric_model_from_drn(file): """ Build a parametric model from the explicit DRN representation. :param String file: DRN file containing the model. :return: Parametric model in sparse representation. :rtype: SparseParametricDtmc or SparseParametricMdp or SparseParametricCTMC or SparseParametricMA """ intermediate = core._build_sparse_parametric_model_from_drn(file) assert intermediate.supports_parameters if intermediate.model_type == ModelType.DTMC: return intermediate._as_pdtmc() elif intermediate.model_type == ModelType.MDP: return intermediate._as_pmdp() elif intermediate.model_type == ModelType.CTMC: return intermediate._as_pctmc() elif intermediate.model_type == ModelType.MA: return intermediate._as_pma() else: raise RuntimeError("Not supported parametric model constructed") def perform_bisimulation(model, properties, bisimulation_type): formulae = [prop.raw_formula for prop in properties] if model.supports_parameters: return core._perform_parametric_bisimulation(model, formulae, bisimulation_type) else: return core._perform_bisimulation(model, formulae, bisimulation_type) def model_checking(model, property): if model.supports_parameters: task = core.ParametricCheckTask(property.raw_formula, False) return core._parametric_model_checking_sparse_engine(model, task) else: task = core.CheckTask(property.raw_formula, False) return core._model_checking_sparse_engine(model, task) def compute_prob01_states(model, phi_states, psi_states): """ Compute prob01 states for properties of the form phi_states until psi_states :param SparseDTMC model: :param BitVector phi_states: :param BitVector psi_states: """ if model.model_type != ModelType.DTMC: raise ValueError("Prob 01 is only defined for DTMCs -- model must be a DTMC") if model.supports_parameters: return core._compute_prob01states_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_double(model, phi_states, psi_states) def compute_prob01min_states(model, phi_states, psi_states): if model.model_type == ModelType.DTMC: return compute_prob01_states(model, phi_states, psi_states) if model.supports_parameters: return core._compute_prob01states_min_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_min_double(model, phi_states, psi_states) def compute_prob01max_states(model, phi_states, psi_states): if model.model_type == ModelType.DTMC: return compute_prob01_states(model, phi_states, psi_states) if model.supports_parameters: return core._compute_prob01states_max_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_max_double(model, phi_states, psi_states)