from sb3_contrib import MaskablePPO from sb3_contrib.common.maskable.evaluation import evaluate_policy from sb3_contrib.common.maskable.policies import MaskableActorCriticPolicy from sb3_contrib.common.wrappers import ActionMasker import gymnasium as gym from minigrid.core.actions import Actions import time from utils import MiniGridShieldHandler, create_log_dir, ShieldingConfig from sb3utils import MiniGridSbShieldingWrapper, parse_sb3_arguments GRID_TO_PRISM_BINARY="/home/spranger/research/tempestpy/Minigrid2PRISM/build/main" def mask_fn(env: gym.Env): return env.create_action_mask() def main(): args = parse_sb3_arguments() formula = args.formula shield_value = args.shield_value shield_comparison = args.shield_comparison shield_handler = MiniGridShieldHandler(GRID_TO_PRISM_BINARY, args.grid_file, args.prism_output_file, formula, shield_value=shield_value, shield_comparison=shield_comparison) env = gym.make(args.env, render_mode="rgb_array") env = MiniGridSbShieldingWrapper(env, shield_handler=shield_handler, create_shield_at_reset=False, mask_actions=args.shielding == ShieldingConfig.Full) env = ActionMasker(env, mask_fn) model = MaskablePPO(MaskableActorCriticPolicy, env, gamma=0.4, verbose=1, tensorboard_log=create_log_dir(args)) steps = args.steps model.learn(steps) print("Learning done, hit enter") input("") vec_env = model.get_env() obs = vec_env.reset() terminated = truncated = False while not terminated and not truncated: action_masks = None action, _states = model.predict(obs, action_masks=action_masks) print(action) obs, reward, terminated, truncated, info = env.step(action) # action, _states = model.predict(obs, deterministic=True) # obs, rewards, dones, info = vec_env.step(action) vec_env.render("human") time.sleep(0.2) if __name__ == '__main__': main()