You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

133 lines
4.4 KiB

import gymnasium as gym
import minigrid
from ray import tune, air
from ray.tune import register_env
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.algorithms.dqn.dqn import DQNConfig
from ray.tune.logger import pretty_print
from ray.rllib.models import ModelCatalog
from torch_action_mask_model import TorchActionMaskModel
from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
from helpers import parse_arguments, create_log_dir, ShieldingConfig
from shieldhandlers import MiniGridShieldHandler, create_shield_query
from callbacks import MyCallbacks
from torch.utils.tensorboard import SummaryWriter
from ray.tune.logger import TBXLogger, UnifiedLogger, CSVLogger
def shielding_env_creater(config):
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
framestack = config.get("framestack", 4)
args = config.get("args", None)
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt"
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism"
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula)
env = gym.make(name)
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query)
# env = minigrid.wrappers.ImgObsWrapper(env)
# env = ImgObsWrapper(env)
env = OneHotShieldingWrapper(env,
config.vector_index if hasattr(config, "vector_index") else 0,
framestack=framestack
)
return env
def register_minigrid_shielding_env(args):
env_name = "mini-grid-shielding"
register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model(
"shielding_model",
TorchActionMaskModel
)
def ppo(args):
register_minigrid_shielding_env(args)
config = (PPOConfig()
.rollouts(num_rollout_workers=args.workers)
.resources(num_gpus=0)
.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training})
.framework("torch")
.callbacks(MyCallbacks)
.rl_module(_enable_rl_module_api = False)
.debugging(logger_config={
"type": TBXLogger,
"logdir": create_log_dir(args)
})
.training(_enable_learner_api=False ,model={
"custom_model": "shielding_model"
}))
return config
def dqn(args):
register_minigrid_shielding_env(args)
config = DQNConfig()
config = config.resources(num_gpus=0)
config = config.rollouts(num_rollout_workers=args.workers)
config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args })
config = config.framework("torch")
config = config.callbacks(MyCallbacks)
config = config.rl_module(_enable_rl_module_api = False)
config = config.debugging(logger_config={
"type": TBXLogger,
"logdir": create_log_dir(args)
})
config = config.training(hiddens=[], dueling=False, model={
"custom_model": "shielding_model"
})
return config
def main():
import argparse
args = parse_arguments(argparse)
if args.algorithm == "PPO":
config = ppo(args)
elif args.algorithm == "DQN":
config = dqn(args)
logdir = create_log_dir(args)
tuner = tune.Tuner(args.algorithm,
tune_config=tune.TuneConfig(
metric="episode_reward_mean",
mode="max",
num_samples=1,
),
run_config=air.RunConfig(
stop = {"episode_reward_mean": 94,
"timesteps_total": 12000,
"training_iteration": args.iterations},
checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ),
storage_path=F"{logdir}"
),
param_space=config,
)
tuner.fit()
if __name__ == '__main__':
main()