|
|
@ -82,6 +82,7 @@ def parse_arguments(argparse): |
|
|
|
parser.add_argument("--agent_view", default=False, action="store_true", help="draw the agent sees") |
|
|
|
parser.add_argument("--grid_path", default="Grid.txt") |
|
|
|
parser.add_argument("--prism_path", default="Grid.PRISM") |
|
|
|
parser.add_argument("--no_masking", default=False) |
|
|
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
@ -92,14 +93,14 @@ def env_creater_custom(config): |
|
|
|
# name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") |
|
|
|
# # name = config.get("name", "MiniGrid-Empty-8x8-v0") |
|
|
|
framestack = config.get("framestack", 4) |
|
|
|
|
|
|
|
shield = config.get("shield", {}) |
|
|
|
# env = gym.make(name) |
|
|
|
# env = ParametricActionsMiniGridEnv(config) |
|
|
|
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") |
|
|
|
framestack = config.get("framestack", 4) |
|
|
|
|
|
|
|
env = gym.make(name) |
|
|
|
env = MiniGridEnvWrapper(env) |
|
|
|
env = MiniGridEnvWrapper(env, shield=shield) |
|
|
|
# env = minigrid.wrappers.ImgObsWrapper(env) |
|
|
|
# env = ImgObsWrapper(env) |
|
|
|
env = OneHotWrapper(env, |
|
|
@ -163,10 +164,21 @@ def create_shield(grid_file, prism_path): |
|
|
|
assert result.has_scheduler |
|
|
|
assert result.has_shield |
|
|
|
shield = result.shield |
|
|
|
|
|
|
|
action_dictionary = {} |
|
|
|
shield_scheduler = shield.construct() |
|
|
|
|
|
|
|
for stateID in model.states: |
|
|
|
choice = shield_scheduler.get_choice(stateID) |
|
|
|
choices = choice.choice_map |
|
|
|
state_valuation = model.state_valuations.get_string(stateID) |
|
|
|
|
|
|
|
actions_to_be_executed = [(choice[1] ,model.choice_labeling.get_labels_of_choice(model.get_choice_index(stateID, choice[1]))) for choice in choices] |
|
|
|
|
|
|
|
action_dictionary[state_valuation] = actions_to_be_executed |
|
|
|
|
|
|
|
stormpy.shields.export_shield(model, shield, "Grid.shield") |
|
|
|
|
|
|
|
return shield.construct(), model |
|
|
|
return action_dictionary |
|
|
|
|
|
|
|
def export_grid_to_text(env, grid_file): |
|
|
|
f = open(grid_file, "w") |
|
|
@ -195,13 +207,13 @@ def main(): |
|
|
|
export_grid_to_text(env, grid_file) |
|
|
|
|
|
|
|
prism_path = args.prism_path |
|
|
|
shield, model = create_shield(grid_file, prism_path) |
|
|
|
shield_dict = {state.id : shield.get_choice(state).choice_map for state in model.states} |
|
|
|
shield_dict = create_shield(grid_file, prism_path) |
|
|
|
#shield_dict = {state.id : shield.get_choice(state).choice_map for state in model.states} |
|
|
|
|
|
|
|
print(shield_dict) |
|
|
|
for state_id in model.states: |
|
|
|
choices = shield.get_choice(state_id) |
|
|
|
print(F"Allowed choices in state {state_id}, are {choices.choice_map} ") |
|
|
|
print(F"Shield dictionary {shield_dict}") |
|
|
|
# for state_id in model.states: |
|
|
|
# choices = shield.get_choice(state_id) |
|
|
|
# print(F"Allowed choices in state {state_id}, are {choices.choice_map} ") |
|
|
|
|
|
|
|
env_name = "mini-grid" |
|
|
|
register_env(env_name, env_creater_custom) |
|
|
@ -213,14 +225,14 @@ def main(): |
|
|
|
config = (PPOConfig() |
|
|
|
.rollouts(num_rollout_workers=1) |
|
|
|
.resources(num_gpus=0) |
|
|
|
.environment(env="mini-grid") |
|
|
|
.environment(env="mini-grid", env_config={"shield": shield_dict }) |
|
|
|
.framework("torch") |
|
|
|
.experimental(_disable_preprocessor_api=False) |
|
|
|
.callbacks(MyCallbacks) |
|
|
|
.rl_module(_enable_rl_module_api = False) |
|
|
|
.training(_enable_learner_api=False ,model={ |
|
|
|
"custom_model": "pa_model", |
|
|
|
"custom_model_config" : {"shield": shield_dict, "no_masking": True} |
|
|
|
"custom_model_config" : {"shield": shield_dict, "no_masking": args.no_masking} |
|
|
|
# "fcnet_hiddens": [256,256], |
|
|
|
# "fcnet_activation": "relu", |
|
|
|
|
|
|
@ -231,9 +243,6 @@ def main(): |
|
|
|
|
|
|
|
config.build() |
|
|
|
) |
|
|
|
episode_reward = 0 |
|
|
|
terminated = truncated = False |
|
|
|
obs, info = env.reset() |
|
|
|
|
|
|
|
# while not terminated and not truncated: |
|
|
|
# action = algo.compute_single_action(obs) |
|
|
|