Thomas Knoll
1 year ago
1 changed files with 267 additions and 0 deletions
@ -0,0 +1,267 @@ |
|||||
|
from typing import Dict, Optional, Union |
||||
|
from ray.rllib.env.base_env import BaseEnv |
||||
|
from ray.rllib.evaluation import RolloutWorker |
||||
|
from ray.rllib.evaluation.episode import Episode |
||||
|
from ray.rllib.evaluation.episode_v2 import EpisodeV2 |
||||
|
from ray.rllib.policy import Policy |
||||
|
from ray.rllib.utils.typing import PolicyID |
||||
|
import stormpy |
||||
|
import stormpy.core |
||||
|
import stormpy.simulator |
||||
|
|
||||
|
from collections import deque |
||||
|
|
||||
|
import stormpy.shields |
||||
|
import stormpy.logic |
||||
|
|
||||
|
import stormpy.examples |
||||
|
import stormpy.examples.files |
||||
|
import os |
||||
|
|
||||
|
import gymnasium as gym |
||||
|
|
||||
|
import minigrid |
||||
|
import numpy as np |
||||
|
|
||||
|
import ray |
||||
|
from ray.tune import register_env |
||||
|
from ray.rllib.algorithms.ppo import PPOConfig |
||||
|
from ray.rllib.utils.test_utils import check_learning_achieved, framework_iterator |
||||
|
from ray import tune, air |
||||
|
from ray.rllib.algorithms.callbacks import DefaultCallbacks |
||||
|
from ray.tune.logger import pretty_print |
||||
|
from ray.rllib.utils.numpy import one_hot |
||||
|
from ray.rllib.algorithms import ppo |
||||
|
|
||||
|
from ray.rllib.models.preprocessors import get_preprocessor |
||||
|
|
||||
|
import matplotlib.pyplot as plt |
||||
|
|
||||
|
import argparse |
||||
|
|
||||
|
|
||||
|
class MyCallbacks(DefaultCallbacks): |
||||
|
def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: |
||||
|
# print(F"Epsiode started Environment: {base_env.get_sub_environments()}") |
||||
|
env = base_env.get_sub_environments()[0] |
||||
|
episode.user_data["count"] = 0 |
||||
|
# print(env.printGrid()) |
||||
|
# print(env.action_space.n) |
||||
|
# print(env.actions) |
||||
|
# print(env.mission) |
||||
|
# print(env.observation_space) |
||||
|
# img = env.get_frame() |
||||
|
# plt.imshow(img) |
||||
|
# plt.show() |
||||
|
|
||||
|
def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy] | None = None, episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: |
||||
|
episode.user_data["count"] = episode.user_data["count"] + 1 |
||||
|
env = base_env.get_sub_environments()[0] |
||||
|
# print(env.env.env.printGrid()) |
||||
|
|
||||
|
def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2 | Exception, env_index: int | None = None, **kwargs) -> None: |
||||
|
# print(F"Epsiode end Environment: {base_env.get_sub_environments()}") |
||||
|
env = base_env.get_sub_environments()[0] |
||||
|
# print(env.env.env.printGrid()) |
||||
|
# print(episode.user_data["count"]) |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
class OneHotWrapper(gym.core.ObservationWrapper): |
||||
|
def __init__(self, env, vector_index, framestack): |
||||
|
super().__init__(env) |
||||
|
self.framestack = framestack |
||||
|
# 49=7x7 field of vision; 11=object types; 6=colors; 3=state types. |
||||
|
# +4: Direction. |
||||
|
self.single_frame_dim = 49 * (11 + 6 + 3) + 4 |
||||
|
self.init_x = None |
||||
|
self.init_y = None |
||||
|
self.x_positions = [] |
||||
|
self.y_positions = [] |
||||
|
self.x_y_delta_buffer = deque(maxlen=100) |
||||
|
self.vector_index = vector_index |
||||
|
self.frame_buffer = deque(maxlen=self.framestack) |
||||
|
for _ in range(self.framestack): |
||||
|
self.frame_buffer.append(np.zeros((self.single_frame_dim,))) |
||||
|
|
||||
|
self.observation_space = gym.spaces.Box( |
||||
|
0.0, 1.0, shape=(self.single_frame_dim * self.framestack,), dtype=np.float32 |
||||
|
) |
||||
|
|
||||
|
def observation(self, obs): |
||||
|
# Debug output: max-x/y positions to watch exploration progress. |
||||
|
if self.step_count == 0: |
||||
|
for _ in range(self.framestack): |
||||
|
self.frame_buffer.append(np.zeros((self.single_frame_dim,))) |
||||
|
if self.vector_index == 0: |
||||
|
if self.x_positions: |
||||
|
max_diff = max( |
||||
|
np.sqrt( |
||||
|
(np.array(self.x_positions) - self.init_x) ** 2 |
||||
|
+ (np.array(self.y_positions) - self.init_y) ** 2 |
||||
|
) |
||||
|
) |
||||
|
self.x_y_delta_buffer.append(max_diff) |
||||
|
print( |
||||
|
"100-average dist travelled={}".format( |
||||
|
np.mean(self.x_y_delta_buffer) |
||||
|
) |
||||
|
) |
||||
|
self.x_positions = [] |
||||
|
self.y_positions = [] |
||||
|
self.init_x = self.agent_pos[0] |
||||
|
self.init_y = self.agent_pos[1] |
||||
|
|
||||
|
|
||||
|
self.x_positions.append(self.agent_pos[0]) |
||||
|
self.y_positions.append(self.agent_pos[1]) |
||||
|
|
||||
|
# One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten. |
||||
|
objects = one_hot(obs[:, :, 0], depth=11) |
||||
|
colors = one_hot(obs[:, :, 1], depth=6) |
||||
|
states = one_hot(obs[:, :, 2], depth=3) |
||||
|
|
||||
|
all_ = np.concatenate([objects, colors, states], -1) |
||||
|
all_flat = np.reshape(all_, (-1,)) |
||||
|
direction = one_hot(np.array(self.agent_dir), depth=4).astype(np.float32) |
||||
|
single_frame = np.concatenate([all_flat, direction]) |
||||
|
self.frame_buffer.append(single_frame) |
||||
|
return np.concatenate(self.frame_buffer) |
||||
|
|
||||
|
|
||||
|
|
||||
|
def parse_arguments(argparse): |
||||
|
parser = argparse.ArgumentParser() |
||||
|
# parser.add_argument("--env", help="gym environment to load", default="MiniGrid-Empty-8x8-v0") |
||||
|
parser.add_argument("--env", help="gym environment to load", default="MiniGrid-LavaCrossingS9N1-v0") |
||||
|
parser.add_argument("--seed", type=int, help="seed for environment", default=1) |
||||
|
parser.add_argument("--tile_size", type=int, help="size at which to render tiles", default=32) |
||||
|
parser.add_argument("--agent_view", default=False, action="store_true", help="draw the agent sees") |
||||
|
parser.add_argument("--grid_path", default="Grid.txt") |
||||
|
parser.add_argument("--prism_path", default="Grid.PRISM") |
||||
|
|
||||
|
args = parser.parse_args() |
||||
|
|
||||
|
return args |
||||
|
|
||||
|
|
||||
|
def env_creater(config): |
||||
|
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") |
||||
|
# name = config.get("name", "MiniGrid-Empty-8x8-v0") |
||||
|
framestack = config.get("framestack", 4) |
||||
|
|
||||
|
env = gym.make(name) |
||||
|
# env = minigrid.wrappers.RGBImgPartialObsWrapper(env) |
||||
|
env = minigrid.wrappers.ImgObsWrapper(env) |
||||
|
env = OneHotWrapper(env, |
||||
|
config.vector_index if hasattr(config, "vector_index") else 0, |
||||
|
framestack=framestack |
||||
|
) |
||||
|
|
||||
|
|
||||
|
return env |
||||
|
|
||||
|
|
||||
|
def create_shield(grid_file, prism_path): |
||||
|
os.system(F"/home/tknoll/Documents/main -v 'agent' -i {grid_file} -o {prism_path}") |
||||
|
|
||||
|
f = open(prism_path, "a") |
||||
|
f.write("label \"AgentIsInLava\" = AgentIsInLava;") |
||||
|
f.close() |
||||
|
|
||||
|
|
||||
|
program = stormpy.parse_prism_program(prism_path) |
||||
|
formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]" |
||||
|
|
||||
|
formulas = stormpy.parse_properties_for_prism_program(formula_str, program) |
||||
|
options = stormpy.BuilderOptions([p.raw_formula for p in formulas]) |
||||
|
options.set_build_state_valuations(True) |
||||
|
options.set_build_choice_labels(True) |
||||
|
options.set_build_all_labels() |
||||
|
model = stormpy.build_sparse_model_with_options(program, options) |
||||
|
|
||||
|
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.1) |
||||
|
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification) |
||||
|
|
||||
|
assert result.has_scheduler |
||||
|
assert result.has_shield |
||||
|
shield = result.shield |
||||
|
|
||||
|
stormpy.shields.export_shield(model, shield,"Grid.shield") |
||||
|
|
||||
|
return shield.construct(), model |
||||
|
|
||||
|
def export_grid_to_text(env, grid_file): |
||||
|
f = open(grid_file, "w") |
||||
|
print(env) |
||||
|
f.write(env.printGrid(init=True)) |
||||
|
# f.write(env.pprint_grid()) |
||||
|
f.close() |
||||
|
|
||||
|
def create_environment(args): |
||||
|
env_id= args.env |
||||
|
env = gym.make(env_id) |
||||
|
env.reset() |
||||
|
return env |
||||
|
|
||||
|
|
||||
|
def main(): |
||||
|
args = parse_arguments(argparse) |
||||
|
|
||||
|
env = create_environment(args) |
||||
|
ray.init(num_cpus=3) |
||||
|
|
||||
|
# print(env.pprint_grid()) |
||||
|
# print(env.printGrid(init=False)) |
||||
|
|
||||
|
grid_file = args.grid_path |
||||
|
export_grid_to_text(env, grid_file) |
||||
|
|
||||
|
prism_path = args.prism_path |
||||
|
shield, model = create_shield(grid_file, prism_path) |
||||
|
|
||||
|
for state_id in model.states: |
||||
|
choices = shield.get_choice(state_id) |
||||
|
print(F"Allowed choices in state {state_id}, are {choices.choice_map} ") |
||||
|
|
||||
|
env_name = "mini-grid" |
||||
|
register_env(env_name, env_creater) |
||||
|
|
||||
|
|
||||
|
algo =( |
||||
|
PPOConfig() |
||||
|
.rollouts(num_rollout_workers=1) |
||||
|
.resources(num_gpus=0) |
||||
|
.environment(env="mini-grid") |
||||
|
.framework("torch") |
||||
|
.callbacks(MyCallbacks) |
||||
|
.training(model={ |
||||
|
"fcnet_hiddens": [256,256], |
||||
|
"fcnet_activation": "relu", |
||||
|
|
||||
|
}) |
||||
|
.build() |
||||
|
) |
||||
|
episode_reward = 0 |
||||
|
terminated = truncated = False |
||||
|
obs, info = env.reset() |
||||
|
|
||||
|
# while not terminated and not truncated: |
||||
|
# action = algo.compute_single_action(obs) |
||||
|
# obs, reward, terminated, truncated = env.step(action) |
||||
|
|
||||
|
for i in range(30): |
||||
|
result = algo.train() |
||||
|
print(pretty_print(result)) |
||||
|
|
||||
|
if i % 5 == 0: |
||||
|
checkpoint_dir = algo.save() |
||||
|
print(f"Checkpoint saved in directory {checkpoint_dir}") |
||||
|
|
||||
|
|
||||
|
|
||||
|
ray.shutdown() |
||||
|
|
||||
|
if __name__ == '__main__': |
||||
|
main() |
Write
Preview
Loading…
Cancel
Save
Reference in new issue