|
@ -65,32 +65,32 @@ def main(): |
|
|
eval_env = ActionMasker(eval_env, nomask_fn) |
|
|
eval_env = ActionMasker(eval_env, nomask_fn) |
|
|
else: |
|
|
else: |
|
|
assert(False) # TODO Do something proper |
|
|
assert(False) # TODO Do something proper |
|
|
#model = MaskablePPO("CnnPolicy", env, verbose=1, tensorboard_log=log_dir, device="auto") |
|
|
|
|
|
#model.set_logger(new_logger) |
|
|
|
|
|
#steps = args.steps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Evaluation |
|
|
|
|
|
#eval_freq=max(500, int(args.steps/30)) |
|
|
|
|
|
#n_eval_episodes=5 |
|
|
|
|
|
#render_freq = eval_freq |
|
|
|
|
|
#if shielded_evaluation(args.shielding): |
|
|
|
|
|
# from sb3_contrib.common.maskable.evaluation import evaluate_policy |
|
|
|
|
|
# evalCallback = MaskableEvalCallback(eval_env, best_model_save_path=log_dir, |
|
|
|
|
|
# log_path=log_dir, eval_freq=eval_freq, |
|
|
|
|
|
# deterministic=True, render=False, n_eval_episodes=n_eval_episodes) |
|
|
|
|
|
# imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0) |
|
|
|
|
|
#else: |
|
|
|
|
|
# from stable_baselines3.common.evaluation import evaluate_policy |
|
|
|
|
|
# evalCallback = EvalCallback(eval_env, best_model_save_path=log_dir, |
|
|
|
|
|
# log_path=log_dir, eval_freq=eval_freq, |
|
|
|
|
|
# deterministic=True, render=False, n_eval_episodes=n_eval_episodes) |
|
|
|
|
|
|
|
|
|
|
|
# imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#model.learn(steps,callback=[imageAndVideoCallback, InfoCallback(), evalCallback]) |
|
|
|
|
|
#model.save(f"{log_dir}/{expname(args)}") |
|
|
|
|
|
|
|
|
model = MaskablePPO("CnnPolicy", env, verbose=1, tensorboard_log=log_dir, device="auto") |
|
|
|
|
|
model.set_logger(new_logger) |
|
|
|
|
|
steps = args.steps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Evaluation |
|
|
|
|
|
eval_freq=max(500, int(args.steps/30)) |
|
|
|
|
|
n_eval_episodes=5 |
|
|
|
|
|
render_freq = eval_freq |
|
|
|
|
|
if shielded_evaluation(args.shielding): |
|
|
|
|
|
from sb3_contrib.common.maskable.evaluation import evaluate_policy |
|
|
|
|
|
evalCallback = MaskableEvalCallback(eval_env, best_model_save_path=log_dir, |
|
|
|
|
|
log_path=log_dir, eval_freq=eval_freq, |
|
|
|
|
|
deterministic=True, render=False, n_eval_episodes=n_eval_episodes) |
|
|
|
|
|
imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0) |
|
|
|
|
|
else: |
|
|
|
|
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
|
|
|
|
evalCallback = EvalCallback(eval_env, best_model_save_path=log_dir, |
|
|
|
|
|
log_path=log_dir, eval_freq=eval_freq, |
|
|
|
|
|
deterministic=True, render=False, n_eval_episodes=n_eval_episodes) |
|
|
|
|
|
|
|
|
|
|
|
imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.learn(steps,callback=[imageAndVideoCallback, InfoCallback(), evalCallback]) |
|
|
|
|
|
model.save(f"{log_dir}/{expname(args)}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
if __name__ == '__main__': |
|
|