Browse Source

Improved some descriptions

refactoring
Matthias Volk 4 years ago
parent
commit
c85fad69e5
No known key found for this signature in database GPG Key ID: 83A57678F739FCD3
  1. 8
      src/storage/model_components.cpp
  2. 92
      tests/storage/test_model_components.py

8
src/storage/model_components.cpp

@ -20,7 +20,7 @@ template<typename ValueType> using SparseModelComponents = storm::storage::spars
void define_sparse_model_components(py::module& m) { void define_sparse_model_components(py::module& m) {
py::class_<SparseModelComponents<double>, std::shared_ptr<SparseModelComponents<double>>>(m, "SparseModelComponents", "ModelComponents description..") //todo
py::class_<SparseModelComponents<double>, std::shared_ptr<SparseModelComponents<double>>>(m, "SparseModelComponents", "Components required for building a sparse model")
.def(py::init<SparseMatrix<double> const&, StateLabeling const&, std::unordered_map<std::string, SparseRewardModel<double>> const&, .def(py::init<SparseMatrix<double> const&, StateLabeling const&, std::unordered_map<std::string, SparseRewardModel<double>> const&,
bool, boost::optional<BitVector> const&, boost::optional<SparseMatrix<storm::storage::sparse::state_type>> const&>(), bool, boost::optional<BitVector> const&, boost::optional<SparseMatrix<storm::storage::sparse::state_type>> const&>(),
@ -32,8 +32,8 @@ void define_sparse_model_components(py::module& m) {
.def_readwrite("transition_matrix", &SparseModelComponents<double>::transitionMatrix, "The transition matrix") .def_readwrite("transition_matrix", &SparseModelComponents<double>::transitionMatrix, "The transition matrix")
.def_readwrite("state_labeling", &SparseModelComponents<double>::stateLabeling, "The state labeling") .def_readwrite("state_labeling", &SparseModelComponents<double>::stateLabeling, "The state labeling")
.def_readwrite("reward_models", &SparseModelComponents<double>::rewardModels, "Reward models associated with the model") .def_readwrite("reward_models", &SparseModelComponents<double>::rewardModels, "Reward models associated with the model")
.def_readwrite("choice_labeling", &SparseModelComponents<double>::choiceLabeling, "A vector that stores a labeling for each choice")
.def_readwrite("state_valuations", &SparseModelComponents<double>::stateValuations, "A vector that stores for each state to which variable valuation it belongs")
.def_readwrite("choice_labeling", &SparseModelComponents<double>::choiceLabeling, "A list that stores a labeling for each choice")
.def_readwrite("state_valuations", &SparseModelComponents<double>::stateValuations, "A list that stores for each state to which variable valuation it belongs")
.def_readwrite("choice_origins", &SparseModelComponents<double>::choiceOrigins, "Stores for each choice from which parts of the input model description it originates") .def_readwrite("choice_origins", &SparseModelComponents<double>::choiceOrigins, "Stores for each choice from which parts of the input model description it originates")
// POMDP specific components // POMDP specific components
@ -42,7 +42,7 @@ void define_sparse_model_components(py::module& m) {
// Continuous time specific components (CTMCs, Markov Automata): // Continuous time specific components (CTMCs, Markov Automata):
.def_readwrite("rate_transitions", &SparseModelComponents<double>::rateTransitions, "True iff the transition values (for Markovian choices) are interpreted as rates") .def_readwrite("rate_transitions", &SparseModelComponents<double>::rateTransitions, "True iff the transition values (for Markovian choices) are interpreted as rates")
.def_readwrite("exit_rates", &SparseModelComponents<double>::exitRates, "The exit rate for each state. Must be given for CTMCs and MAs, if rate_transitions is false. Otherwise, it is optional.") .def_readwrite("exit_rates", &SparseModelComponents<double>::exitRates, "The exit rate for each state. Must be given for CTMCs and MAs, if rate_transitions is false. Otherwise, it is optional.")
.def_readwrite("markovian_states", &SparseModelComponents<double>::markovianStates, "A vector that stores which states are markovian (only for Markov Automata)")
.def_readwrite("markovian_states", &SparseModelComponents<double>::markovianStates, "A list that stores which states are Markovian (only for Markov Automata)")
// Stochastic two player game specific components: // Stochastic two player game specific components:
.def_readwrite("player1_matrix", &SparseModelComponents<double>::observabilityClasses, "Matrix of player 1 choices (needed for stochastic two player games") .def_readwrite("player1_matrix", &SparseModelComponents<double>::observabilityClasses, "Matrix of player 1 choices (needed for stochastic two player games")

92
tests/storage/test_model_components.py

@ -44,7 +44,7 @@ class TestSparseModelComponents:
# Build transition matrix, update number of rows and columns # Build transition matrix, update number of rows and columns
transition_matrix = builder.build(nr_states, nr_states) transition_matrix = builder.build(nr_states, nr_states)
# state_labeling
# state labeling
state_labeling = stormpy.storage.StateLabeling(nr_states) state_labeling = stormpy.storage.StateLabeling(nr_states)
state_labels = {'init', 'one', 'two', 'three', 'four', 'five', 'six', 'done', 'deadlock'} state_labels = {'init', 'one', 'two', 'three', 'four', 'five', 'six', 'done', 'deadlock'}
for label in state_labels: for label in state_labels:
@ -66,7 +66,7 @@ class TestSparseModelComponents:
action_reward = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] action_reward = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
reward_models['coin_flips'] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward) reward_models['coin_flips'] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward)
# state_valuations
# state valuations
manager = stormpy.ExpressionManager() manager = stormpy.ExpressionManager()
var_s = manager.create_integer_variable(name='s') var_s = manager.create_integer_variable(name='s')
var_d = manager.create_integer_variable(name='d') var_d = manager.create_integer_variable(name='d')
@ -92,7 +92,7 @@ class TestSparseModelComponents:
choice_origins = stormpy.PrismChoiceOrigins(prism_program, index_to_identifier_mapping, choice_origins = stormpy.PrismChoiceOrigins(prism_program, index_to_identifier_mapping,
id_to_command_set_mapping) id_to_command_set_mapping)
# Construct Components
# Construct components
components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling, components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling,
reward_models=reward_models) reward_models=reward_models)
components.choice_origins = choice_origins components.choice_origins = choice_origins
@ -114,7 +114,7 @@ class TestSparseModelComponents:
for state in dtmc.states: for state in dtmc.states:
assert len(state.actions) <= 1 assert len(state.actions) <= 1
# Test state_labeling
# Test state labeling
assert dtmc.labeling.get_labels() == {'init', 'deadlock', 'done', 'one', 'two', 'three', 'four', 'five', 'six'} assert dtmc.labeling.get_labels() == {'init', 'deadlock', 'done', 'one', 'two', 'three', 'four', 'five', 'six'}
# Test reward_models # Test reward_models
@ -125,7 +125,7 @@ class TestSparseModelComponents:
assert reward == 1.0 or reward == 0.0 assert reward == 1.0 or reward == 0.0
assert not dtmc.reward_models["coin_flips"].has_transition_rewards assert not dtmc.reward_models["coin_flips"].has_transition_rewards
# Test choice_labeling
# Test choice labeling
assert not dtmc.has_choice_labeling() assert not dtmc.has_choice_labeling()
# Test state_valuations # Test state_valuations
@ -139,7 +139,7 @@ class TestSparseModelComponents:
assert value_s == [0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7] assert value_s == [0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7]
assert value_d == [0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6] assert value_d == [0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6]
# Test choice_origins
# Test choice origins
assert dtmc.has_choice_origins() assert dtmc.has_choice_origins()
assert dtmc.choice_origins is components.choice_origins assert dtmc.choice_origins is components.choice_origins
assert dtmc.choice_origins.get_number_of_identifiers() == 9 assert dtmc.choice_origins.get_number_of_identifiers() == 9
@ -168,7 +168,7 @@ class TestSparseModelComponents:
transition_matrix = stormpy.build_sparse_matrix(transitions) transition_matrix = stormpy.build_sparse_matrix(transitions)
# state_labeling
# state labeling
state_labeling = stormpy.storage.StateLabeling(nr_states) state_labeling = stormpy.storage.StateLabeling(nr_states)
# Add labels # Add labels
state_labels = {'init', 'deadlock', 'target'} state_labels = {'init', 'deadlock', 'target'}
@ -179,7 +179,7 @@ class TestSparseModelComponents:
state_labeling.add_label_to_state('init', 0) state_labeling.add_label_to_state('init', 0)
state_labeling.set_states('target', stormpy.BitVector(nr_states, [5, 8])) state_labeling.set_states('target', stormpy.BitVector(nr_states, [5, 8]))
# reward_models
# reward models
reward_models = {} reward_models = {}
# vector representing state-action rewards # vector representing state-action rewards
action_reward = [0.0, 0.0, 0.0, 0.0, 0.0, 2 / 3, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] action_reward = [0.0, 0.0, 0.0, 0.0, 0.0, 2 / 3, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]
@ -189,7 +189,7 @@ class TestSparseModelComponents:
state_reward = [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0] state_reward = [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]
reward_models['waiting'] = stormpy.SparseRewardModel(optional_state_reward_vector=state_reward) reward_models['waiting'] = stormpy.SparseRewardModel(optional_state_reward_vector=state_reward)
# choice_labeling
# choice labeling
choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices) choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices)
choice_labels = {'loop1a', 'loop1b', 'serve1', 'loop2a', 'loop2b', 'serve2'} choice_labels = {'loop1a', 'loop1b', 'serve1', 'loop2a', 'loop2b', 'serve2'}
# Add labels # Add labels
@ -206,7 +206,7 @@ class TestSparseModelComponents:
# state exit rates # state exit rates
exit_rates = [201.0, 200.5, 200.5, 201.0, 200.0, 1.5, 200.5, 200.5, 1.0, 200.0, 1.5, 1.0] exit_rates = [201.0, 200.5, 200.5, 201.0, 200.0, 1.5, 200.5, 200.5, 1.0, 200.0, 1.5, 1.0]
# state_valuations
# state valuations
manager = stormpy.ExpressionManager() manager = stormpy.ExpressionManager()
var_s = manager.create_integer_variable(name='s') var_s = manager.create_integer_variable(name='s')
var_a = manager.create_integer_variable(name='a') var_a = manager.create_integer_variable(name='a')
@ -240,6 +240,7 @@ class TestSparseModelComponents:
components.exit_rates = exit_rates components.exit_rates = exit_rates
components.state_valuations = state_valuations components.state_valuations = state_valuations
# Build CTMC
ctmc = stormpy.storage.SparseCtmc(components) ctmc = stormpy.storage.SparseCtmc(components)
assert type(ctmc) is stormpy.SparseCtmc assert type(ctmc) is stormpy.SparseCtmc
assert not ctmc.supports_parameters assert not ctmc.supports_parameters
@ -255,10 +256,10 @@ class TestSparseModelComponents:
for state in ctmc.states: for state in ctmc.states:
assert len(state.actions) <= 1 assert len(state.actions) <= 1
# Test state_labeling
# Test state labeling
assert ctmc.labeling.get_labels() == {'target', 'init', 'deadlock'} assert ctmc.labeling.get_labels() == {'target', 'init', 'deadlock'}
# Test reward_models
# Test reward models
assert len(ctmc.reward_models) == 2 assert len(ctmc.reward_models) == 2
assert not ctmc.reward_models["served"].has_state_rewards assert not ctmc.reward_models["served"].has_state_rewards
assert ctmc.reward_models["served"].has_state_action_rewards assert ctmc.reward_models["served"].has_state_action_rewards
@ -271,11 +272,11 @@ class TestSparseModelComponents:
assert ctmc.reward_models["waiting"].state_rewards == [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0] assert ctmc.reward_models["waiting"].state_rewards == [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]
assert not ctmc.reward_models["waiting"].has_transition_rewards assert not ctmc.reward_models["waiting"].has_transition_rewards
# Test choice_labeling
# Test choice labeling
assert ctmc.has_choice_labeling() assert ctmc.has_choice_labeling()
assert ctmc.choice_labeling.get_labels() == {'loop1a', 'loop1b', 'serve1', 'loop2a', 'loop2b', 'serve2'} assert ctmc.choice_labeling.get_labels() == {'loop1a', 'loop1b', 'serve1', 'loop2a', 'loop2b', 'serve2'}
# Test state_valuations
# Test state valuations
assert ctmc.has_state_valuations() assert ctmc.has_state_valuations()
assert ctmc.state_valuations assert ctmc.state_valuations
value_s = [None] * nr_states value_s = [None] * nr_states
@ -292,7 +293,7 @@ class TestSparseModelComponents:
assert value_s1 == [0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1] assert value_s1 == [0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1]
assert value_s2 == [0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1] assert value_s2 == [0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1]
# Test choice_origins
# Test choice origins
assert not ctmc.has_choice_origins() assert not ctmc.has_choice_origins()
# Test exit_rates # Test exit_rates
@ -302,7 +303,7 @@ class TestSparseModelComponents:
nr_states = 5 nr_states = 5
nr_choices = 10 nr_choices = 10
# Build transition_matrix
# Build transition matrix
builder = stormpy.SparseMatrixBuilder(rows=0, columns=0, entries=0, force_dimensions=False, builder = stormpy.SparseMatrixBuilder(rows=0, columns=0, entries=0, force_dimensions=False,
has_custom_row_grouping=True, row_groups=0) has_custom_row_grouping=True, row_groups=0)
@ -341,7 +342,7 @@ class TestSparseModelComponents:
transition_matrix = builder.build(nr_choices, nr_states) transition_matrix = builder.build(nr_choices, nr_states)
# state_labeling
# state labeling
state_labeling = stormpy.storage.StateLabeling(nr_states) state_labeling = stormpy.storage.StateLabeling(nr_states)
# Add labels # Add labels
state_labels = {'init', 'deadlock'} state_labels = {'init', 'deadlock'}
@ -351,7 +352,7 @@ class TestSparseModelComponents:
# Add label to states # Add label to states
state_labeling.add_label_to_state('init', 0) state_labeling.add_label_to_state('init', 0)
# state_valuations
# state valuations
manager = stormpy.ExpressionManager() manager = stormpy.ExpressionManager()
var_s = manager.create_integer_variable(name='s') var_s = manager.create_integer_variable(name='s')
v_builder = stormpy.StateValuationsBuilder() v_builder = stormpy.StateValuationsBuilder()
@ -396,6 +397,7 @@ class TestSparseModelComponents:
components.choice_origins = choice_origins components.choice_origins = choice_origins
components.exit_rates = exit_rates components.exit_rates = exit_rates
# Build MA
ma = stormpy.storage.SparseMA(components) ma = stormpy.storage.SparseMA(components)
assert type(ma) is stormpy.SparseMA assert type(ma) is stormpy.SparseMA
assert not ma.supports_parameters assert not ma.supports_parameters
@ -423,16 +425,16 @@ class TestSparseModelComponents:
for state in ma.states: for state in ma.states:
assert len(state.actions) <= 3 assert len(state.actions) <= 3
# Test state_labeling
# Test state labeling
assert ma.labeling.get_labels() == {'deadlock', 'init'} assert ma.labeling.get_labels() == {'deadlock', 'init'}
# Test reward_models
# Test reward models
assert len(ma.reward_models) == 0 assert len(ma.reward_models) == 0
# Test choice_labeling
# Test choice labeling
assert not ma.has_choice_labeling() assert not ma.has_choice_labeling()
# Test state_valuations
# Test state valuations
assert ma.has_state_valuations() assert ma.has_state_valuations()
value_s = [None] * nr_states value_s = [None] * nr_states
@ -440,14 +442,14 @@ class TestSparseModelComponents:
value_s[s] = ma.state_valuations.get_integer_value(s, var_s) value_s[s] = ma.state_valuations.get_integer_value(s, var_s)
assert value_s == [0, 2, 1, 4, 3] assert value_s == [0, 2, 1, 4, 3]
# Test choice_origins
# Test choice origins
assert ma.has_choice_origins() assert ma.has_choice_origins()
assert ma.choice_origins.get_number_of_identifiers() == 11 assert ma.choice_origins.get_number_of_identifiers() == 11
# Test exit_rates
# Test exit rates
assert ma.exit_rates == [3.0, 12.0, 10.0, 3.0, 4.0] assert ma.exit_rates == [3.0, 12.0, 10.0, 3.0, 4.0]
# Test markovian states
# Test Markovian states
assert ma.markovian_states == stormpy.BitVector(5, [0, 1, 2, 3, 4]) assert ma.markovian_states == stormpy.BitVector(5, [0, 1, 2, 3, 4])
def test_build_mdp(self): def test_build_mdp(self):
@ -495,7 +497,7 @@ class TestSparseModelComponents:
transition_matrix = builder.build(nr_choices, nr_states) transition_matrix = builder.build(nr_choices, nr_states)
# state_labeling
# state labeling
state_labeling = stormpy.storage.StateLabeling(nr_states) state_labeling = stormpy.storage.StateLabeling(nr_states)
labels = {'init', 'one', 'two', 'three', 'four', 'five', 'six', 'done', 'deadlock'} labels = {'init', 'one', 'two', 'three', 'four', 'five', 'six', 'done', 'deadlock'}
for label in labels: for label in labels:
@ -510,13 +512,13 @@ class TestSparseModelComponents:
state_labeling.set_states('done', stormpy.BitVector(nr_states, [7, 8, 9, 10, 11, 12])) state_labeling.set_states('done', stormpy.BitVector(nr_states, [7, 8, 9, 10, 11, 12]))
# reward_models
# reward models
reward_models = {} reward_models = {}
# Vector representing the state-action rewards # Vector representing the state-action rewards
action_reward = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] action_reward = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
reward_models['coin_flips'] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward) reward_models['coin_flips'] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward)
# choice_labeling
# choice labeling
choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices) choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices)
choice_labels = {'a', 'b'} choice_labels = {'a', 'b'}
for label in choice_labels: for label in choice_labels:
@ -524,7 +526,7 @@ class TestSparseModelComponents:
choice_labeling.add_label_to_choice('a', 0) choice_labeling.add_label_to_choice('a', 0)
choice_labeling.add_label_to_choice('b', 1) choice_labeling.add_label_to_choice('b', 1)
# state_valuations
# state valuations
manager = stormpy.ExpressionManager() manager = stormpy.ExpressionManager()
var_s = manager.create_integer_variable(name='s') var_s = manager.create_integer_variable(name='s')
var_d = manager.create_integer_variable(name='d') var_d = manager.create_integer_variable(name='d')
@ -538,7 +540,7 @@ class TestSparseModelComponents:
v_builder.add_state(state=s, boolean_values=[], integer_values=[7, s - 6], rational_values=[]) v_builder.add_state(state=s, boolean_values=[], integer_values=[7, s - 6], rational_values=[])
state_valuations = v_builder.build(13) state_valuations = v_builder.build(13)
# choice_origins
# choice origins
prism_program = stormpy.parse_prism_program(get_example_path("mdp", "die_c1.nm")) prism_program = stormpy.parse_prism_program(get_example_path("mdp", "die_c1.nm"))
index_to_identifier_mapping = [1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9] index_to_identifier_mapping = [1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9]
@ -557,6 +559,7 @@ class TestSparseModelComponents:
components.choice_labeling = choice_labeling components.choice_labeling = choice_labeling
components.choice_origins = choice_origins components.choice_origins = choice_origins
# Build MDP
mdp = stormpy.storage.SparseMdp(components) mdp = stormpy.storage.SparseMdp(components)
assert type(mdp) is stormpy.SparseMdp assert type(mdp) is stormpy.SparseMdp
@ -573,10 +576,10 @@ class TestSparseModelComponents:
for state in mdp.states: for state in mdp.states:
assert len(state.actions) <= 2 assert len(state.actions) <= 2
# Test state_labeling
# Test state labeling
assert mdp.labeling.get_labels() == {'init', 'deadlock', 'done', 'one', 'two', 'three', 'four', 'five', 'six'} assert mdp.labeling.get_labels() == {'init', 'deadlock', 'done', 'one', 'two', 'three', 'four', 'five', 'six'}
# Test reward_models
# Test reward models
assert len(mdp.reward_models) == 1 assert len(mdp.reward_models) == 1
assert not mdp.reward_models["coin_flips"].has_state_rewards assert not mdp.reward_models["coin_flips"].has_state_rewards
assert mdp.reward_models["coin_flips"].has_state_action_rewards assert mdp.reward_models["coin_flips"].has_state_action_rewards
@ -584,11 +587,11 @@ class TestSparseModelComponents:
assert reward == 1.0 or reward == 0.0 assert reward == 1.0 or reward == 0.0
assert not mdp.reward_models["coin_flips"].has_transition_rewards assert not mdp.reward_models["coin_flips"].has_transition_rewards
# Test choice_labeling
# Test choice labeling
assert mdp.has_choice_labeling() assert mdp.has_choice_labeling()
assert mdp.choice_labeling.get_labels() == {'a', 'b'} assert mdp.choice_labeling.get_labels() == {'a', 'b'}
# Test state_valuations
# Test state valuations
assert mdp.has_state_valuations() assert mdp.has_state_valuations()
assert mdp.state_valuations assert mdp.state_valuations
value_s = [None] * nr_states value_s = [None] * nr_states
@ -599,7 +602,7 @@ class TestSparseModelComponents:
assert value_s == [0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7] assert value_s == [0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7]
assert value_d == [0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6] assert value_d == [0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6]
# Test choice_origins
# Test choice origins
assert mdp.has_choice_origins() assert mdp.has_choice_origins()
assert mdp.choice_origins is components.choice_origins assert mdp.choice_origins is components.choice_origins
assert mdp.choice_origins.get_number_of_identifiers() == 10 assert mdp.choice_origins.get_number_of_identifiers() == 10
@ -662,7 +665,7 @@ class TestSparseModelComponents:
transition_matrix = stormpy.build_sparse_matrix(transitions, transition_matrix = stormpy.build_sparse_matrix(transitions,
row_group_indices=[0, 1, 5, 9, 13, 17, 21, 25, 29, 33]) row_group_indices=[0, 1, 5, 9, 13, 17, 21, 25, 29, 33])
# state_labeling
# state labeling
state_labeling = stormpy.storage.StateLabeling(nr_states) state_labeling = stormpy.storage.StateLabeling(nr_states)
labels = {'deadlock', 'goal', 'init'} labels = {'deadlock', 'goal', 'init'}
for label in labels: for label in labels:
@ -670,14 +673,14 @@ class TestSparseModelComponents:
state_labeling.add_label_to_state('init', 0) state_labeling.add_label_to_state('init', 0)
state_labeling.add_label_to_state('goal', 9) state_labeling.add_label_to_state('goal', 9)
# reward_models
# reward models
reward_models = {} reward_models = {}
# Vector representing state-action rewards # Vector representing state-action rewards
action_reward = [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, action_reward = [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0] 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0]
reward_models[''] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward) reward_models[''] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward)
# choice_labeling
# choice labeling
choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices) choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices)
choice_labels = {'south', 'north', 'west', 'east', 'done'} choice_labels = {'south', 'north', 'west', 'east', 'done'}
for label in choice_labels: for label in choice_labels:
@ -688,7 +691,7 @@ class TestSparseModelComponents:
choice_labeling.set_choices('east', stormpy.BitVector(nr_choices, [1, 5, 9, 13, 17, 21, 25, 29])) choice_labeling.set_choices('east', stormpy.BitVector(nr_choices, [1, 5, 9, 13, 17, 21, 25, 29]))
choice_labeling.set_choices('done', stormpy.BitVector(nr_choices, [33])) choice_labeling.set_choices('done', stormpy.BitVector(nr_choices, [33]))
# StateValuations
# state valuations
manager = stormpy.ExpressionManager() manager = stormpy.ExpressionManager()
var_x = manager.create_integer_variable(name='x') var_x = manager.create_integer_variable(name='x')
var_y = manager.create_integer_variable(name='y') var_y = manager.create_integer_variable(name='y')
@ -722,6 +725,7 @@ class TestSparseModelComponents:
# components.choice_origins=choice_origins # components.choice_origins=choice_origins
components.observability_classes = observations components.observability_classes = observations
# Build POMDP
pomdp = stormpy.storage.SparsePomdp(components) pomdp = stormpy.storage.SparsePomdp(components)
assert type(pomdp) is stormpy.SparsePomdp assert type(pomdp) is stormpy.SparsePomdp
assert not pomdp.supports_parameters assert not pomdp.supports_parameters
@ -735,10 +739,10 @@ class TestSparseModelComponents:
for state in pomdp.states: for state in pomdp.states:
assert len(state.actions) <= 4 assert len(state.actions) <= 4
# Test state_labeling
# Test state labeling
assert pomdp.labeling.get_labels() == {'init', 'goal', 'deadlock'} assert pomdp.labeling.get_labels() == {'init', 'goal', 'deadlock'}
# Test reward_models
# Test reward models
assert len(pomdp.reward_models) == 1 assert len(pomdp.reward_models) == 1
assert not pomdp.reward_models[''].has_state_rewards assert not pomdp.reward_models[''].has_state_rewards
assert pomdp.reward_models[''].has_state_action_rewards assert pomdp.reward_models[''].has_state_action_rewards
@ -746,11 +750,11 @@ class TestSparseModelComponents:
assert reward == 1.0 or reward == 0.0 assert reward == 1.0 or reward == 0.0
assert not pomdp.reward_models[''].has_transition_rewards assert not pomdp.reward_models[''].has_transition_rewards
# Test choice_labeling
# Test choice labeling
assert pomdp.has_choice_labeling() assert pomdp.has_choice_labeling()
assert pomdp.choice_labeling.get_labels() == {'east', 'west', 'north', 'south', 'done'} assert pomdp.choice_labeling.get_labels() == {'east', 'west', 'north', 'south', 'done'}
# Test state_valuations
# Test state valuations
assert pomdp.has_state_valuations() assert pomdp.has_state_valuations()
assert pomdp.state_valuations assert pomdp.state_valuations
value_x = [None] * nr_states value_x = [None] * nr_states
@ -764,7 +768,7 @@ class TestSparseModelComponents:
assert value_y == [0, 0, 1, 2, 0, 1, 2, 1, 2, 0] assert value_y == [0, 0, 1, 2, 0, 1, 2, 1, 2, 0]
assert value_o == [0, 1, 1, 1, 1, 1, 1, 1, 1, 2] assert value_o == [0, 1, 1, 1, 1, 1, 1, 1, 1, 2]
# Test choice_origins
# Test choice origins
assert not pomdp.has_choice_origins() assert not pomdp.has_choice_origins()
assert pomdp.observations == [1, 0, 0, 0, 0, 0, 0, 0, 0, 2] assert pomdp.observations == [1, 0, 0, 0, 0, 0, 0, 0, 0, 2]
Loading…
Cancel
Save