|
|
@ -13,7 +13,7 @@ import stormpy.pomdp |
|
|
|
import stormpy._config as config |
|
|
|
|
|
|
|
|
|
|
|
def example_parametric_models_02(): |
|
|
|
def example_parametric_models_01(): |
|
|
|
# Check support for parameters |
|
|
|
if not config.storm_with_pars: |
|
|
|
print("Support parameters is missing. Try building storm-pars.") |
|
|
@ -26,20 +26,55 @@ def example_parametric_models_02(): |
|
|
|
else: |
|
|
|
import pycarl.gmp.formula |
|
|
|
|
|
|
|
### |
|
|
|
# How to apply an unknown FSC to obtain a pMC from a POMDP |
|
|
|
path = stormpy.examples.files.prism_pomdp_maze |
|
|
|
prism_program = stormpy.parse_prism_program(path) |
|
|
|
|
|
|
|
formula_str = "P=? [\"goal\"]" |
|
|
|
properties = stormpy.parse_properties_for_prism_program(formula_str, prism_program) |
|
|
|
# construct the POMDP |
|
|
|
pomdp = stormpy.build_model(prism_program, properties) |
|
|
|
# make its representation canonic. |
|
|
|
pomdp = stormpy.pomdp.make_canonic(pomdp) |
|
|
|
# make the POMDP simple. This step is optional but often beneficial |
|
|
|
pomdp = stormpy.pomdp.make_simple(pomdp) |
|
|
|
# construct the memory for the FSC |
|
|
|
# in this case, a selective counter with two states |
|
|
|
memory_builder = stormpy.pomdp.PomdpMemoryBuilder() |
|
|
|
memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 2) |
|
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
|
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory) |
|
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
|
pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear) |
|
|
|
|
|
|
|
stormpy.export_parametric_to_drn(pmc, "test.out") |
|
|
|
#### |
|
|
|
# How to apply an unknown FSC to obtain a pMC from a pPOMDP |
|
|
|
path = stormpy.examples.files.prism_par_pomdp_maze |
|
|
|
prism_program = stormpy.parse_prism_program(path) |
|
|
|
|
|
|
|
formula_str = "P=? [\"goal\"]" |
|
|
|
properties = stormpy.parse_properties_for_prism_program(formula_str, prism_program) |
|
|
|
# construct the pPOMDP |
|
|
|
pomdp = stormpy.build_parametric_model(prism_program, properties) |
|
|
|
# make its representation canonic. |
|
|
|
pomdp = stormpy.pomdp.make_canonic(pomdp) |
|
|
|
# make the POMDP simple. This step is optional but often beneficial |
|
|
|
pomdp = stormpy.pomdp.make_simple(pomdp) |
|
|
|
# construct the memory for the FSC |
|
|
|
# in this case, a selective counter with two states |
|
|
|
memory_builder = stormpy.pomdp.PomdpMemoryBuilder() |
|
|
|
memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 2) |
|
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
|
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory) |
|
|
|
# apply the unknown FSC to obtain a pmc from the POMDP |
|
|
|
pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear) |
|
|
|
|
|
|
|
export_pmc = False # Set to True to export the pMC as drn. |
|
|
|
if export_pmc: |
|
|
|
export_options = stormpy.core.DirectEncodingOptions() |
|
|
|
export_options.allow_placeholders = False |
|
|
|
stormpy.export_parametric_to_drn(pmc, "test.out", export_options) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
example_parametric_models_02() |
|
|
|
example_parametric_models_01() |