4 changed files with 137 additions and 5 deletions
-
4examples/shields/rl/11_minigridrl.py
-
133examples/shields/rl/12_minigridrl_tune.py
-
3examples/shields/rl/15_train_eval_tune.py
-
2examples/shields/rl/helpers.py
@ -0,0 +1,133 @@ |
|||||
|
import gymnasium as gym |
||||
|
import minigrid |
||||
|
|
||||
|
from ray import tune, air |
||||
|
from ray.tune import register_env |
||||
|
from ray.rllib.algorithms.algorithm import Algorithm |
||||
|
from ray.rllib.algorithms.ppo import PPOConfig |
||||
|
from ray.rllib.algorithms.dqn.dqn import DQNConfig |
||||
|
from ray.tune.logger import pretty_print |
||||
|
from ray.rllib.models import ModelCatalog |
||||
|
|
||||
|
|
||||
|
from torch_action_mask_model import TorchActionMaskModel |
||||
|
from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper |
||||
|
from helpers import parse_arguments, create_log_dir, ShieldingConfig |
||||
|
from shieldhandlers import MiniGridShieldHandler, create_shield_query |
||||
|
from callbacks import MyCallbacks |
||||
|
|
||||
|
from torch.utils.tensorboard import SummaryWriter |
||||
|
from ray.tune.logger import TBXLogger, UnifiedLogger, CSVLogger |
||||
|
|
||||
|
def shielding_env_creater(config): |
||||
|
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") |
||||
|
framestack = config.get("framestack", 4) |
||||
|
args = config.get("args", None) |
||||
|
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" |
||||
|
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" |
||||
|
|
||||
|
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) |
||||
|
|
||||
|
env = gym.make(name) |
||||
|
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query) |
||||
|
# env = minigrid.wrappers.ImgObsWrapper(env) |
||||
|
# env = ImgObsWrapper(env) |
||||
|
env = OneHotShieldingWrapper(env, |
||||
|
config.vector_index if hasattr(config, "vector_index") else 0, |
||||
|
framestack=framestack |
||||
|
) |
||||
|
|
||||
|
|
||||
|
return env |
||||
|
|
||||
|
|
||||
|
|
||||
|
def register_minigrid_shielding_env(args): |
||||
|
env_name = "mini-grid-shielding" |
||||
|
register_env(env_name, shielding_env_creater) |
||||
|
|
||||
|
ModelCatalog.register_custom_model( |
||||
|
"shielding_model", |
||||
|
TorchActionMaskModel |
||||
|
) |
||||
|
|
||||
|
|
||||
|
def ppo(args): |
||||
|
register_minigrid_shielding_env(args) |
||||
|
|
||||
|
config = (PPOConfig() |
||||
|
.rollouts(num_rollout_workers=args.workers) |
||||
|
.resources(num_gpus=0) |
||||
|
.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training}) |
||||
|
.framework("torch") |
||||
|
.callbacks(MyCallbacks) |
||||
|
.rl_module(_enable_rl_module_api = False) |
||||
|
.debugging(logger_config={ |
||||
|
"type": TBXLogger, |
||||
|
"logdir": create_log_dir(args) |
||||
|
}) |
||||
|
.training(_enable_learner_api=False ,model={ |
||||
|
"custom_model": "shielding_model" |
||||
|
})) |
||||
|
|
||||
|
return config |
||||
|
|
||||
|
|
||||
|
|
||||
|
def dqn(args): |
||||
|
register_minigrid_shielding_env(args) |
||||
|
|
||||
|
|
||||
|
config = DQNConfig() |
||||
|
config = config.resources(num_gpus=0) |
||||
|
config = config.rollouts(num_rollout_workers=args.workers) |
||||
|
config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args }) |
||||
|
config = config.framework("torch") |
||||
|
config = config.callbacks(MyCallbacks) |
||||
|
config = config.rl_module(_enable_rl_module_api = False) |
||||
|
config = config.debugging(logger_config={ |
||||
|
"type": TBXLogger, |
||||
|
"logdir": create_log_dir(args) |
||||
|
}) |
||||
|
config = config.training(hiddens=[], dueling=False, model={ |
||||
|
"custom_model": "shielding_model" |
||||
|
}) |
||||
|
|
||||
|
return config |
||||
|
|
||||
|
|
||||
|
def main(): |
||||
|
import argparse |
||||
|
args = parse_arguments(argparse) |
||||
|
|
||||
|
if args.algorithm == "PPO": |
||||
|
config = ppo(args) |
||||
|
elif args.algorithm == "DQN": |
||||
|
config = dqn(args) |
||||
|
|
||||
|
logdir = create_log_dir(args) |
||||
|
|
||||
|
tuner = tune.Tuner(args.algorithm, |
||||
|
tune_config=tune.TuneConfig( |
||||
|
metric="episode_reward_mean", |
||||
|
mode="max", |
||||
|
num_samples=1, |
||||
|
|
||||
|
), |
||||
|
run_config=air.RunConfig( |
||||
|
stop = {"episode_reward_mean": 94, |
||||
|
"timesteps_total": 12000, |
||||
|
"training_iteration": args.iterations}, |
||||
|
checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ), |
||||
|
storage_path=F"{logdir}" |
||||
|
), |
||||
|
param_space=config, |
||||
|
) |
||||
|
|
||||
|
tuner.fit() |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
if __name__ == '__main__': |
||||
|
main() |
Write
Preview
Loading…
Cancel
Save
Reference in new issue