4 changed files with 137 additions and 5 deletions
-
4examples/shields/rl/11_minigridrl.py
-
133examples/shields/rl/12_minigridrl_tune.py
-
3examples/shields/rl/15_train_eval_tune.py
-
2examples/shields/rl/helpers.py
@ -0,0 +1,133 @@ |
|||
import gymnasium as gym |
|||
import minigrid |
|||
|
|||
from ray import tune, air |
|||
from ray.tune import register_env |
|||
from ray.rllib.algorithms.algorithm import Algorithm |
|||
from ray.rllib.algorithms.ppo import PPOConfig |
|||
from ray.rllib.algorithms.dqn.dqn import DQNConfig |
|||
from ray.tune.logger import pretty_print |
|||
from ray.rllib.models import ModelCatalog |
|||
|
|||
|
|||
from torch_action_mask_model import TorchActionMaskModel |
|||
from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper |
|||
from helpers import parse_arguments, create_log_dir, ShieldingConfig |
|||
from shieldhandlers import MiniGridShieldHandler, create_shield_query |
|||
from callbacks import MyCallbacks |
|||
|
|||
from torch.utils.tensorboard import SummaryWriter |
|||
from ray.tune.logger import TBXLogger, UnifiedLogger, CSVLogger |
|||
|
|||
def shielding_env_creater(config): |
|||
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") |
|||
framestack = config.get("framestack", 4) |
|||
args = config.get("args", None) |
|||
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" |
|||
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" |
|||
|
|||
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) |
|||
|
|||
env = gym.make(name) |
|||
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query) |
|||
# env = minigrid.wrappers.ImgObsWrapper(env) |
|||
# env = ImgObsWrapper(env) |
|||
env = OneHotShieldingWrapper(env, |
|||
config.vector_index if hasattr(config, "vector_index") else 0, |
|||
framestack=framestack |
|||
) |
|||
|
|||
|
|||
return env |
|||
|
|||
|
|||
|
|||
def register_minigrid_shielding_env(args): |
|||
env_name = "mini-grid-shielding" |
|||
register_env(env_name, shielding_env_creater) |
|||
|
|||
ModelCatalog.register_custom_model( |
|||
"shielding_model", |
|||
TorchActionMaskModel |
|||
) |
|||
|
|||
|
|||
def ppo(args): |
|||
register_minigrid_shielding_env(args) |
|||
|
|||
config = (PPOConfig() |
|||
.rollouts(num_rollout_workers=args.workers) |
|||
.resources(num_gpus=0) |
|||
.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training}) |
|||
.framework("torch") |
|||
.callbacks(MyCallbacks) |
|||
.rl_module(_enable_rl_module_api = False) |
|||
.debugging(logger_config={ |
|||
"type": TBXLogger, |
|||
"logdir": create_log_dir(args) |
|||
}) |
|||
.training(_enable_learner_api=False ,model={ |
|||
"custom_model": "shielding_model" |
|||
})) |
|||
|
|||
return config |
|||
|
|||
|
|||
|
|||
def dqn(args): |
|||
register_minigrid_shielding_env(args) |
|||
|
|||
|
|||
config = DQNConfig() |
|||
config = config.resources(num_gpus=0) |
|||
config = config.rollouts(num_rollout_workers=args.workers) |
|||
config = config.environment(env="mini-grid-shielding", env_config={"name": args.env, "args": args }) |
|||
config = config.framework("torch") |
|||
config = config.callbacks(MyCallbacks) |
|||
config = config.rl_module(_enable_rl_module_api = False) |
|||
config = config.debugging(logger_config={ |
|||
"type": TBXLogger, |
|||
"logdir": create_log_dir(args) |
|||
}) |
|||
config = config.training(hiddens=[], dueling=False, model={ |
|||
"custom_model": "shielding_model" |
|||
}) |
|||
|
|||
return config |
|||
|
|||
|
|||
def main(): |
|||
import argparse |
|||
args = parse_arguments(argparse) |
|||
|
|||
if args.algorithm == "PPO": |
|||
config = ppo(args) |
|||
elif args.algorithm == "DQN": |
|||
config = dqn(args) |
|||
|
|||
logdir = create_log_dir(args) |
|||
|
|||
tuner = tune.Tuner(args.algorithm, |
|||
tune_config=tune.TuneConfig( |
|||
metric="episode_reward_mean", |
|||
mode="max", |
|||
num_samples=1, |
|||
|
|||
), |
|||
run_config=air.RunConfig( |
|||
stop = {"episode_reward_mean": 94, |
|||
"timesteps_total": 12000, |
|||
"training_iteration": args.iterations}, |
|||
checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ), |
|||
storage_path=F"{logdir}" |
|||
), |
|||
param_space=config, |
|||
) |
|||
|
|||
tuner.fit() |
|||
|
|||
|
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
main() |
Write
Preview
Loading…
Cancel
Save
Reference in new issue