|
|
@ -28,55 +28,59 @@ def example_parametric_models_01(): |
|
|
|
|
|
|
|
# Prevent curious side effects from earlier runs (for tests only) |
|
|
|
pycarl.clear_pools() |
|
|
|
### |
|
|
|
# How to apply an unknown FSC to obtain a pMC from a POMDP |
|
|
|
path = stormpy.examples.files.prism_pomdp_maze |
|
|
|
prism_program = stormpy.parse_prism_program(path) |
|
|
|
|
|
|
|
formula_str = "P=? [\"goal\"]" |
|
|
|
properties = stormpy.parse_properties_for_prism_program(formula_str, prism_program) |
|
|
|
# construct the POMDP |
|
|
|
pomdp = stormpy.build_model(prism_program, properties) |
|
|
|
# make its representation canonic. |
|
|
|
pomdp = stormpy.pomdp.make_canonic(pomdp) |
|
|
|
# make the POMDP simple. This step is optional but often beneficial |
|
|
|
pomdp = stormpy.pomdp.make_simple(pomdp) |
|
|
|
# construct the memory for the FSC |
|
|
|
# in this case, a selective counter with two states |
|
|
|
memory_builder = stormpy.pomdp.PomdpMemoryBuilder() |
|
|
|
memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 2) |
|
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
|
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory) |
|
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
|
pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear) |
|
|
|
# ### |
|
|
|
# # How to apply an unknown FSC to obtain a pMC from a POMDP |
|
|
|
# path = stormpy.examples.files.prism_pomdp_maze |
|
|
|
# prism_program = stormpy.parse_prism_program(path) |
|
|
|
# |
|
|
|
# formula_str = "P=? [!\"bad\" U \"goal\"]" |
|
|
|
# properties = stormpy.parse_properties_for_prism_program(formula_str, prism_program) |
|
|
|
# # construct the POMDP |
|
|
|
# pomdp = stormpy.build_model(prism_program, properties) |
|
|
|
# # make its representation canonic. |
|
|
|
# pomdp = stormpy.pomdp.make_canonic(pomdp) |
|
|
|
# # make the POMDP simple. This step is optional but often beneficial |
|
|
|
# pomdp = stormpy.pomdp.make_simple(pomdp) |
|
|
|
# # construct the memory for the FSC |
|
|
|
# # in this case, a selective counter with two states |
|
|
|
# memory_builder = stormpy.pomdp.PomdpMemoryBuilder() |
|
|
|
# memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 2) |
|
|
|
# # apply the memory onto the POMDP to get the cartesian product |
|
|
|
# pomdp = stormpy.pomdp.unfold_memory(pomdp, memory) |
|
|
|
# # apply the memory onto the POMDP to get the cartesian product |
|
|
|
# pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear) |
|
|
|
|
|
|
|
#### |
|
|
|
# How to apply an unknown FSC to obtain a pMC from a pPOMDP |
|
|
|
path = stormpy.examples.files.prism_par_pomdp_maze |
|
|
|
prism_program = stormpy.parse_prism_program(path) |
|
|
|
|
|
|
|
formula_str = "P=? [\"goal\"]" |
|
|
|
formula_str = "P=? [!\"bad\" U \"goal\"]" |
|
|
|
properties = stormpy.parse_properties_for_prism_program(formula_str, prism_program) |
|
|
|
# construct the pPOMDP |
|
|
|
pomdp = stormpy.build_parametric_model(prism_program, properties) |
|
|
|
options = stormpy.BuilderOptions([p.raw_formula for p in properties]) |
|
|
|
options.set_build_state_valuations() |
|
|
|
options.set_build_choice_labels() |
|
|
|
pomdp = stormpy.build_sparse_parametric_model_with_options(prism_program, options) |
|
|
|
# make its representation canonic. |
|
|
|
pomdp = stormpy.pomdp.make_canonic(pomdp) |
|
|
|
# make the POMDP simple. This step is optional but often beneficial |
|
|
|
pomdp = stormpy.pomdp.make_simple(pomdp) |
|
|
|
|
|
|
|
# construct the memory for the FSC |
|
|
|
# in this case, a selective counter with two states |
|
|
|
memory_builder = stormpy.pomdp.PomdpMemoryBuilder() |
|
|
|
memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 2) |
|
|
|
memory = memory_builder.build(stormpy.pomdp.PomdpMemoryPattern.selective_counter, 3) |
|
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
|
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory) |
|
|
|
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory, add_memory_labels=True, keep_state_valuations=True) |
|
|
|
# make the POMDP simple. This step is optional but often beneficial |
|
|
|
pomdp = stormpy.pomdp.make_simple(pomdp, keep_state_valuations=True) |
|
|
|
# apply the unknown FSC to obtain a pmc from the POMDP |
|
|
|
pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear) |
|
|
|
|
|
|
|
export_pmc = False # Set to True to export the pMC as drn. |
|
|
|
export_pmc = True # Set to True to export the pMC as drn. |
|
|
|
if export_pmc: |
|
|
|
export_options = stormpy.core.DirectEncodingOptions() |
|
|
|
export_options.allow_placeholders = False |
|
|
|
stormpy.export_parametric_to_drn(pmc, "test.out", export_options) |
|
|
|
stormpy.export_to_drn(pmc, "test.out", export_options) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
example_parametric_models_01() |