Thomas Knoll
1 year ago
2 changed files with 6 additions and 278 deletions
@ -1,275 +0,0 @@ |
|||
from typing import Dict, Optional, Union |
|||
from ray.rllib.env.base_env import BaseEnv |
|||
from ray.rllib.evaluation import RolloutWorker |
|||
from ray.rllib.evaluation.episode import Episode |
|||
from ray.rllib.evaluation.episode_v2 import EpisodeV2 |
|||
from ray.rllib.policy import Policy |
|||
from ray.rllib.utils.typing import PolicyID |
|||
import stormpy |
|||
import stormpy.core |
|||
import stormpy.simulator |
|||
|
|||
from collections import deque |
|||
|
|||
import stormpy.shields |
|||
import stormpy.logic |
|||
|
|||
import stormpy.examples |
|||
import stormpy.examples.files |
|||
import os |
|||
|
|||
import gymnasium as gym |
|||
|
|||
import minigrid |
|||
import numpy as np |
|||
|
|||
import ray |
|||
from ray.tune import register_env |
|||
from ray.rllib.algorithms.ppo import PPOConfig |
|||
from ray.rllib.utils.test_utils import check_learning_achieved, framework_iterator |
|||
from ray import tune, air |
|||
from ray.rllib.algorithms.callbacks import DefaultCallbacks |
|||
from ray.tune.logger import pretty_print |
|||
from ray.rllib.utils.numpy import one_hot |
|||
from ray.rllib.algorithms import ppo |
|||
|
|||
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC |
|||
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork |
|||
from ray.rllib.utils.torch_utils import FLOAT_MIN |
|||
|
|||
from ray.rllib.models.preprocessors import get_preprocessor |
|||
|
|||
import matplotlib.pyplot as plt |
|||
|
|||
import argparse |
|||
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 |
|||
from ray.rllib.utils.framework import try_import_tf, try_import_torch |
|||
|
|||
from examples.shields.rl.Wrappers import OneHotShieldingWrapper |
|||
|
|||
|
|||
torch, nn = try_import_torch() |
|||
|
|||
class TorchActionMaskModel(TorchModelV2, nn.Module): |
|||
"""PyTorch version of above ActionMaskingModel.""" |
|||
|
|||
def __init__( |
|||
self, |
|||
obs_space, |
|||
action_space, |
|||
num_outputs, |
|||
model_config, |
|||
name, |
|||
**kwargs, |
|||
): |
|||
orig_space = getattr(obs_space, "original_space", obs_space) |
|||
assert ( |
|||
isinstance(orig_space, Dict) |
|||
and "action_mask" in orig_space.spaces |
|||
and "observations" in orig_space.spaces |
|||
) |
|||
|
|||
TorchModelV2.__init__( |
|||
self, obs_space, action_space, num_outputs, model_config, name, **kwargs |
|||
) |
|||
nn.Module.__init__(self) |
|||
|
|||
self.internal_model = TorchFC( |
|||
orig_space["observations"], |
|||
action_space, |
|||
num_outputs, |
|||
model_config, |
|||
name + "_internal", |
|||
) |
|||
|
|||
# disable action masking --> will likely lead to invalid actions |
|||
self.no_masking = False |
|||
if "no_masking" in model_config["custom_model_config"]: |
|||
self.no_masking = model_config["custom_model_config"]["no_masking"] |
|||
|
|||
def forward(self, input_dict, state, seq_lens): |
|||
# Extract the available actions tensor from the observation. |
|||
action_mask = input_dict["obs"]["action_mask"] |
|||
|
|||
# Compute the unmasked logits. |
|||
logits, _ = self.internal_model({"obs": input_dict["obs"]["observations"]}) |
|||
|
|||
# If action masking is disabled, directly return unmasked logits |
|||
if self.no_masking: |
|||
return logits, state |
|||
|
|||
# Convert action_mask into a [0.0 || -inf]-type mask. |
|||
inf_mask = torch.clamp(torch.log(action_mask), min=FLOAT_MIN) |
|||
masked_logits = logits + inf_mask |
|||
|
|||
# Return masked logits. |
|||
return masked_logits, state |
|||
|
|||
def value_function(self): |
|||
return self.internal_model.value_function() |
|||
|
|||
|
|||
|
|||
class MyCallbacks(DefaultCallbacks): |
|||
def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: |
|||
# print(F"Epsiode started Environment: {base_env.get_sub_environments()}") |
|||
env = base_env.get_sub_environments()[0] |
|||
episode.user_data["count"] = 0 |
|||
# print(env.printGrid()) |
|||
# print(env.action_space.n) |
|||
# print(env.actions) |
|||
# print(env.mission) |
|||
# print(env.observation_space) |
|||
# img = env.get_frame() |
|||
# plt.imshow(img) |
|||
# plt.show() |
|||
|
|||
def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy] | None = None, episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: |
|||
episode.user_data["count"] = episode.user_data["count"] + 1 |
|||
env = base_env.get_sub_environments()[0] |
|||
# print(env.env.env.printGrid()) |
|||
|
|||
def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2 | Exception, env_index: int | None = None, **kwargs) -> None: |
|||
# print(F"Epsiode end Environment: {base_env.get_sub_environments()}") |
|||
env = base_env.get_sub_environments()[0] |
|||
# print(env.env.env.printGrid()) |
|||
# print(episode.user_data["count"]) |
|||
|
|||
|
|||
|
|||
|
|||
|
|||
def parse_arguments(argparse): |
|||
parser = argparse.ArgumentParser() |
|||
# parser.add_argument("--env", help="gym environment to load", default="MiniGrid-Empty-8x8-v0") |
|||
parser.add_argument("--env", help="gym environment to load", default="MiniGrid-LavaCrossingS9N1-v0") |
|||
parser.add_argument("--seed", type=int, help="seed for environment", default=1) |
|||
parser.add_argument("--tile_size", type=int, help="size at which to render tiles", default=32) |
|||
parser.add_argument("--agent_view", default=False, action="store_true", help="draw the agent sees") |
|||
parser.add_argument("--grid_path", default="Grid.txt") |
|||
parser.add_argument("--prism_path", default="Grid.PRISM") |
|||
|
|||
args = parser.parse_args() |
|||
|
|||
return args |
|||
|
|||
|
|||
def env_creater(config): |
|||
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") |
|||
# name = config.get("name", "MiniGrid-Empty-8x8-v0") |
|||
framestack = config.get("framestack", 4) |
|||
|
|||
env = gym.make(name) |
|||
# env = minigrid.wrappers.RGBImgPartialObsWrapper(env) |
|||
env = minigrid.wrappers.ImgObsWrapper(env) |
|||
env = OneHotShieldingWrapper(env, |
|||
config.vector_index if hasattr(config, "vector_index") else 0, |
|||
framestack=framestack |
|||
) |
|||
|
|||
|
|||
return env |
|||
|
|||
|
|||
def create_shield(grid_file, prism_path): |
|||
os.system(F"/home/tknoll/Documents/main -v 'agent' -i {grid_file} -o {prism_path}") |
|||
|
|||
f = open(prism_path, "a") |
|||
f.write("label \"AgentIsInLava\" = AgentIsInLava;") |
|||
f.close() |
|||
|
|||
|
|||
program = stormpy.parse_prism_program(prism_path) |
|||
formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]" |
|||
|
|||
formulas = stormpy.parse_properties_for_prism_program(formula_str, program) |
|||
options = stormpy.BuilderOptions([p.raw_formula for p in formulas]) |
|||
options.set_build_state_valuations(True) |
|||
options.set_build_choice_labels(True) |
|||
options.set_build_all_labels() |
|||
model = stormpy.build_sparse_model_with_options(program, options) |
|||
|
|||
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.1) |
|||
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification) |
|||
|
|||
assert result.has_scheduler |
|||
assert result.has_shield |
|||
shield = result.shield |
|||
|
|||
stormpy.shields.export_shield(model, shield,"Grid.shield") |
|||
|
|||
return shield.construct(), model |
|||
|
|||
def export_grid_to_text(env, grid_file): |
|||
f = open(grid_file, "w") |
|||
print(env) |
|||
f.write(env.printGrid(init=True)) |
|||
# f.write(env.pprint_grid()) |
|||
f.close() |
|||
|
|||
def create_environment(args): |
|||
env_id= args.env |
|||
env = gym.make(env_id) |
|||
env.reset() |
|||
return env |
|||
|
|||
|
|||
def main(): |
|||
args = parse_arguments(argparse) |
|||
|
|||
env = create_environment(args) |
|||
ray.init(num_cpus=3) |
|||
|
|||
# print(env.pprint_grid()) |
|||
# print(env.printGrid(init=False)) |
|||
|
|||
grid_file = args.grid_path |
|||
export_grid_to_text(env, grid_file) |
|||
|
|||
prism_path = args.prism_path |
|||
shield, model = create_shield(grid_file, prism_path) |
|||
|
|||
for state_id in model.states: |
|||
choices = shield.get_choice(state_id) |
|||
print(F"Allowed choices in state {state_id}, are {choices.choice_map} ") |
|||
|
|||
env_name = "mini-grid" |
|||
register_env(env_name, env_creater) |
|||
|
|||
|
|||
algo =( |
|||
PPOConfig() |
|||
.rollouts(num_rollout_workers=1) |
|||
.resources(num_gpus=0) |
|||
.environment(env="mini-grid") |
|||
.framework("torch") |
|||
.callbacks(MyCallbacks) |
|||
.training(model={ |
|||
"fcnet_hiddens": [256,256], |
|||
"fcnet_activation": "relu", |
|||
|
|||
}) |
|||
.build() |
|||
) |
|||
episode_reward = 0 |
|||
terminated = truncated = False |
|||
obs, info = env.reset() |
|||
|
|||
# while not terminated and not truncated: |
|||
# action = algo.compute_single_action(obs) |
|||
# obs, reward, terminated, truncated = env.step(action) |
|||
|
|||
for i in range(30): |
|||
result = algo.train() |
|||
print(pretty_print(result)) |
|||
|
|||
if i % 5 == 0: |
|||
checkpoint_dir = algo.save() |
|||
print(f"Checkpoint saved in directory {checkpoint_dir}") |
|||
|
|||
|
|||
|
|||
ray.shutdown() |
|||
|
|||
if __name__ == '__main__': |
|||
main() |
Write
Preview
Loading…
Cancel
Save
Reference in new issue