|  | @ -89,21 +89,8 @@ def main(): | 
		
	
		
			
				|  |  |         imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0) |  |  |         imageAndVideoCallback = ImageRecorderCallback(eval_env, render_freq, n_eval_episodes=1, evaluation_method=evaluate_policy, log_dir=log_dir, deterministic=True, verbose=0) | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  |     model.learn(steps,callback=[imageAndVideoCallback, InfoCallback()]) |  |  |  | 
		
	
		
			
				|  |  | 
 |  |  |  | 
		
	
		
			
				|  |  |     #vec_env = model.get_env() |  |  |  | 
		
	
		
			
				|  |  |     #obs = vec_env.reset() |  |  |  | 
		
	
		
			
				|  |  |     #terminated = truncated = False |  |  |  | 
		
	
		
			
				|  |  |     #while not terminated and not truncated: |  |  |  | 
		
	
		
			
				|  |  |     #    action_masks = None |  |  |  | 
		
	
		
			
				|  |  |     #    action, _states = model.predict(obs, action_masks=action_masks) |  |  |  | 
		
	
		
			
				|  |  |     #    print(action) |  |  |  | 
		
	
		
			
				|  |  |     #    obs, reward, terminated, truncated, info = env.step(action) |  |  |  | 
		
	
		
			
				|  |  |     #    # action, _states = model.predict(obs, deterministic=True) |  |  |  | 
		
	
		
			
				|  |  |     #    # obs, rewards, dones, info = vec_env.step(action) |  |  |  | 
		
	
		
			
				|  |  |     #    vec_env.render("human") |  |  |  | 
		
	
		
			
				|  |  |     #    time.sleep(0.2) |  |  |  | 
		
	
		
			
				|  |  | 
 |  |  |  | 
		
	
		
			
				|  |  |  |  |  |     model.learn(steps,callback=[imageAndVideoCallback, InfoCallback(), evalCallback]) | 
		
	
		
			
				|  |  |  |  |  |     model.save(f"{log_dir}/{expname(args)}") | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | if __name__ == '__main__': |  |  | if __name__ == '__main__': | 
		
	
	
		
			
				|  | 
 |