Browse Source

some explanation for iterating over MDPs and POMDPs

refactoring
Sebastian Junges 6 years ago
parent
commit
233bf8b2ba
  1. 1
      doc/source/advanced_topics.rst
  2. 30
      examples/exploration/01-exploration.py
  3. 38
      examples/exploration/02-exploration.py
  4. 4
      lib/stormpy/examples/files.py
  5. 126
      lib/stormpy/examples/files/mdp/maze_2.nm

1
doc/source/advanced_topics.rst

@ -9,6 +9,7 @@ This guide is a collection of examples meant to bridge the gap between the getti
:caption: Contents:
doc/building_models
doc/exploration
doc/reward_models
doc/shortest_paths
doc/parametric_models

30
examples/exploration/01-exploration.py

@ -0,0 +1,30 @@
import stormpy
import stormpy.core
import stormpy.examples
import stormpy.examples.files
def example_exploration_01():
"""
Example to exploration of MDPs.
:return:
"""
program = stormpy.parse_prism_program(stormpy.examples.files.prism_pomdp_maze)
prop = "R=? [F \"goal\"]"
properties = stormpy.parse_properties_for_prism_program(prop, program, None)
model = stormpy.build_model(program, properties)
print(model.model_type)
for state in model.states:
if state.id in model.initial_states:
print(state)
for action in state.actions:
for transition in action.transitions:
print("From state {} by action {}, with probability {}, go to state {}".format(state, action, transition.value(),
transition.column))
if __name__ == '__main__':
example_exploration_01()

38
examples/exploration/02-exploration.py

@ -0,0 +1,38 @@
import stormpy
import stormpy.core
import stormpy.examples
import stormpy.examples.files
def example_exploration_02():
"""
Example to exploration of POMDPs.
:return:
"""
program = stormpy.parse_prism_program(stormpy.examples.files.prism_pomdp_maze)
prop = "R=? [F \"goal\"]"
properties = stormpy.parse_properties_for_prism_program(prop, program, None)
model = stormpy.build_model(program, properties)
print(model.model_type)
# Internally, POMDPs are just MDPs with additional observation information.
# Thus, data structure exploration for MDPs can be applied as before.
initial_state = model.initial_states[0]
for state in model.states:
if state.id in model.initial_states:
print(state)
for action in state.actions:
for transition in action.transitions:
print("From state {} by action {}, with probability {}, go to state {}".format(state, action, transition.value(),
transition.column))
print(model.nr_observations)
for state in model.states:
print("State {} has observation id {}".format(state.id, model.observations[state.id]))
if __name__ == '__main__':
example_exploration_02()

4
lib/stormpy/examples/files.py

@ -27,6 +27,10 @@ jani_dtmc_die = _path("dtmc", "die.jani")
"""Jani Version of Knuth Yao Die Example"""
prism_mdp_coin_2_2 = _path("mdp", "coin2-2.nm")
"""Prism example for coin MDP"""
prism_mdp_maze = _path("mdp", "maze_2.nm")
"""Prism example for the maze MDP"""
prism_pomdp_maze = _path("pomdp", "maze_2.prism")
"""Prism example for the maze POMDP"""
dft_galileo_hecs = _path("dft", "hecs.dft")
"""DFT example for HECS (Galileo format)"""
dft_json_and = _path("dft", "and.json")

126
lib/stormpy/examples/files/mdp/maze_2.nm

@ -0,0 +1,126 @@
// maze example (POMDP)
// slightly extends that presented in
// Littman, Cassandra and Kaelbling
// Learning policies for partially observable environments: Scaling up
// Technical Report CS, Brown University
// gxn 29/01/16
// Made into a MDP for documentation of stormpy.
// state space (value of variable "s")
// 0 1 2 3 4
// 5 6 7
// 8 9 10
// 11 13 12
// 13 is the target
mdp
module maze
s : [-1..13];
// initialisation
[] s=-1 -> 1/13 : (s'=0)
+ 1/13 : (s'=1)
+ 1/13 : (s'=2)
+ 1/13 : (s'=3)
+ 1/13 : (s'=4)
+ 1/13 : (s'=5)
+ 1/13 : (s'=6)
+ 1/13 : (s'=7)
+ 1/13 : (s'=8)
+ 1/13 : (s'=9)
+ 1/13 : (s'=10)
+ 1/13 : (s'=11)
+ 1/13 : (s'=12);
// moving around the maze
[east] s=0 -> (s'=1);
[west] s=0 -> (s'=0);
[north] s=0 -> (s'=0);
[south] s=0 -> (s'=5);
[east] s=1 -> (s'=2);
[west] s=1 -> (s'=0);
[north] s=1 -> (s'=1);
[south] s=1 -> (s'=1);
[east] s=2 -> (s'=3);
[west] s=2 -> (s'=1);
[north] s=2 -> (s'=2);
[south] s=2 -> (s'=6);
[east] s=3 -> (s'=4);
[west] s=3 -> (s'=2);
[north] s=3 -> (s'=3);
[south] s=3 -> (s'=3);
[east] s=4 -> (s'=4);
[west] s=4 -> (s'=3);
[north] s=4 -> (s'=4);
[south] s=4 -> (s'=7);
[east] s=5 -> (s'=5);
[west] s=5 -> (s'=5);
[north] s=5 -> (s'=0);
[south] s=5 -> (s'=8);
[east] s=6 -> (s'=6);
[west] s=6 -> (s'=6);
[north] s=6 -> (s'=2);
[south] s=6 -> (s'=9);
[east] s=7 -> (s'=7);
[west] s=7 -> (s'=7);
[north] s=7 -> (s'=4);
[south] s=7 -> (s'=10);
[east] s=8 -> (s'=8);
[west] s=8 -> (s'=8);
[north] s=8 -> (s'=5);
[south] s=8 -> (s'=11);
[east] s=9 -> (s'=9);
[west] s=9 -> (s'=9);
[north] s=9 -> (s'=6);
[south] s=9 -> (s'=13);
[east] s=10 -> (s'=9);
[west] s=10 -> (s'=9);
[north] s=10 -> (s'=7);
[south] s=10 -> (s'=12);
[east] s=11 -> (s'=11);
[west] s=11 -> (s'=11);
[north] s=11 -> (s'=8);
[south] s=11 -> (s'=11);
[east] s=12 -> (s'=12);
[west] s=12 -> (s'=12);
[north] s=12 -> (s'=10);
[south] s=12 -> (s'=12);
// loop when we reach the target
[done] s=13 -> true;
endmodule
// reward structure (number of steps to reach the target)
rewards
[east] true : 1;
[west] true : 1;
[north] true : 1;
[south] true : 1;
endrewards
// target observation
label "goal" = s=13;
Loading…
Cancel
Save