Browse Source

evaluate sb3 training

WIP: Not a 100% sure whether the masking will be used in the evaluation
refactoring
sp 1 year ago
parent
commit
028c942625
  1. 33
      examples/shields/rl/13_minigridsb.py

33
examples/shields/rl/13_minigridsb.py

@ -15,6 +15,7 @@ from sb3utils import MiniGridSbShieldingWrapper, parse_sb3_arguments, ImageRecor
from stable_baselines3.common.callbacks import EvalCallback
import os, sys
from copy import deepcopy
GRID_TO_PRISM_BINARY=os.getenv("M2P_BINARY")
def mask_fn(env: gym.Env):
@ -27,32 +28,48 @@ def nomask_fn(env: gym.Env):
def main():
args = parse_sb3_arguments()
formula = args.formula
shield_value = args.shield_value
shield_comparison = args.shield_comparison
log_dir = create_log_dir(args)
new_logger = Logger(log_dir, output_formats=[CSVOutputFormat(os.path.join(log_dir, f"progress_{expname(args)}.csv")), TensorBoardOutputFormat(log_dir), HumanOutputFormat(sys.stdout)])
new_logger = Logger(log_dir, output_formats=[CSVOutputFormat(os.path.join(log_dir, f"progress_{expname(args)}.csv")), TensorBoardOutputFormat(log_dir)])
if args.shielding == ShieldingConfig.Full or args.shielding == ShieldingConfig.Training or args.shielding == ShieldingConfig.Evaluation:
shield_handler = MiniGridShieldHandler(GRID_TO_PRISM_BINARY, args.grid_file, args.prism_output_file, formula, shield_value=shield_value, shield_comparison=shield_comparison, nocleanup=args.nocleanup)
env = gym.make(args.env, render_mode="rgb_array")
env = RGBImgObsWrapper(env)
env = ImgObsWrapper(env)
env = MiniWrapper(env)
if args.shielding == ShieldingConfig.Full or args.shielding == ShieldingConfig.Training:
shield_handler = MiniGridShieldHandler(GRID_TO_PRISM_BINARY, args.grid_file, args.prism_output_file, formula, shield_value=shield_value, shield_comparison=shield_comparison, nocleanup=args.nocleanup)
eval_env = deepcopy(env)
eval_env.disable_random_start()
if args.shielding == ShieldingConfig.Full:
env = MiniGridSbShieldingWrapper(env, shield_handler=shield_handler, create_shield_at_reset=False)
env = ActionMasker(env, mask_fn)
else:
eval_env = MiniGridSbShieldingWrapper(eval_env, shield_handler=shield_handler, create_shield_at_reset=False)
eval_env = ActionMasker(eval_env, mask_fn)
elif args.shielding == ShieldingConfig.Training:
env = MiniGridSbShieldingWrapper(env, shield_handler=shield_handler, create_shield_at_reset=False)
env = ActionMasker(env, mask_fn)
eval_env = ActionMasker(eval_env, nomask_fn)
elif args.shielding == ShieldingConfig.Evaluation:
env = ActionMasker(env, nomask_fn)
eval_env = MiniGridSbShieldingWrapper(eval_env, shield_handler=shield_handler, create_shield_at_reset=False)
eval_env = ActionMasker(eval_env, mask_fn)
elif args.shielding == ShieldingConfig.Disabled:
env = ActionMasker(env, nomask_fn)
eval_env = ActionMasker(eval_env, nomask_fn)
else:
assert(False) # TODO Do something proper
model = MaskablePPO("CnnPolicy", env, verbose=1, tensorboard_log=log_dir, device="auto")
model.set_logger(new_logger)
evalCallback = EvalCallback(env, best_model_save_path=log_dir,
evalCallback = EvalCallback(eval_env, best_model_save_path=log_dir,
log_path=log_dir, eval_freq=max(500, int(args.steps/30)),
deterministic=True, render=False)
deterministic=True, render=False, n_eval_episodes=5)
steps = args.steps
model.learn(steps,callback=[ImageRecorderCallback(), InfoCallback()])
model.learn(steps,callback=[ImageRecorderCallback(), InfoCallback(), evalCallback])
#vec_env = model.get_env()
#obs = vec_env.reset()

Loading…
Cancel
Save