|
|
from . import core from .core import * from . import storage from .storage import * from .version import __version__ import stormpy.logic
from pycarl import Variable # needed for building parametric models
core._set_up("")
def build_model(program, properties=None): """
Build a model from a symbolic description
:param PrismProgram program: Prism program to translate into a model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. """
if properties: formulae = [prop.raw_formula for prop in properties] intermediate = core._build_sparse_model_from_prism_program(program, formulae) else: intermediate = core._build_sparse_model_from_prism_program(program) assert not intermediate.supports_parameters if intermediate.model_type == ModelType.DTMC: return intermediate._as_dtmc() elif intermediate.model_type == ModelType.MDP: return intermediate._as_mdp() else: raise RuntimeError("Not supported non-parametric model constructed")
def build_parametric_model(program, properties=None): """
:param PrismProgram program: Prism program with open constants to translate into a parametric model. :param List[Property] properties: List of properties that should be preserved during the translation. If None, then all properties are preserved. """
if properties: formulae = [prop.raw_formula for prop in properties] else: formulae = [] intermediate = core._build_sparse_parametric_model_from_prism_program(program, formulae) assert intermediate.supports_parameters if intermediate.model_type == ModelType.DTMC: return intermediate._as_pdtmc() elif intermediate.model_type == ModelType.MDP: return intermediate._as_pmdp() else: raise RuntimeError("Not supported parametric model constructed")
def perform_bisimulation(model, property, bisimulation_type): if model.supports_parameters: return core._perform_parametric_bisimulation(model, property.raw_formula, bisimulation_type) else: return core._perform_bisimulation(model, property.raw_formula, bisimulation_type)
def model_checking(model, property): if model.supports_parameters: return core._parametric_model_checking(model, property.raw_formula) else: return core._model_checking(model, property.raw_formula)
def compute_prob01_states(model, phi_states, psi_states): """
Compute prob01 states for properties of the form phi_states until psi_states
:param SparseDTMC model: :param BitVector phi_states: :param BitVector psi_states: """
if model.model_type != ModelType.DTMC: raise ValueError("Prob 01 is only defined for DTMCs -- model must be a DTMC")
if model.supports_parameters: return core._compute_prob01states_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_double(model, phi_states, psi_states)
def compute_prob01min_states(model, phi_states, psi_states): if model.model_type == ModelType.DTMC: return compute_prob01_states(model, phi_states, psi_states) if model.supports_parameters: return core._compute_prob01states_min_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_min_double(model, phi_states, psi_states)
def compute_prob01max_states(model, phi_states, psi_states): if model.model_type == ModelType.DTMC: return compute_prob01_states(model, phi_states, psi_states) if model.supports_parameters: return core._compute_prob01states_max_rationalfunc(model, phi_states, psi_states) else: return core._compute_prob01states_max_double(model, phi_states, psi_states)
|