|
|
from typing import Dict, Optional from ray.rllib.env.env_context import EnvContext
from ray.rllib.policy import Policy from ray.rllib.utils.typing import EnvType, PolicyID
from ray.rllib.algorithms.algorithm import Algorithm from ray.rllib.env.base_env import BaseEnv from ray.rllib.evaluation import RolloutWorker from ray.rllib.evaluation.episode import Episode from ray.rllib.evaluation.episode_v2 import EpisodeV2
from ray.rllib.algorithms.callbacks import DefaultCallbacks, make_multi_callbacks
import matplotlib.pyplot as plt
import tensorflow as tf
class ShieldInfoCallback(DefaultCallbacks): def on_episode_start(self) -> None: file_writer = tf.summary.create_file_writer(log_dir) with file_writer.as_default(): tf.summary.text("first_text", "testing", step=0)
def on_episode_step(self) -> None: pass
class MyCallbacks(DefaultCallbacks): #def on_algorithm_init(self, algorithm: Algorithm, **kwargs): # file_writer = tf.summary.FileWriter(algorithm.logdir) # with file_writer.as_default(): # tf.summary.text("first_text", "testing", step=0) # file_writer.flush()
def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode, env_index, **kwargs) -> None: file_writer = tf.summary.create_file_writer(f"{worker.io_context.log_dir}/shield_data") print(file_writer.logdir) file_writer.add_text("first_text_from_episode_start", "testing_in_episode", 0) file_writer.flush() # print(F"Epsiode started Environment: {base_env.get_sub_environments()}") env = base_env.get_sub_environments()[0] episode.user_data["count"] = 0 episode.user_data["ran_into_lava"] = [] episode.user_data["goals_reached"] = [] episode.user_data["ran_into_adversary"] = [] episode.hist_data["ran_into_lava"] = [] episode.hist_data["goals_reached"] = [] episode.hist_data["ran_into_adversary"] = []
# print("On episode start print") # print(env.printGrid()) # print(worker) # print(env.action_space.n) # print(env.actions) # print(env.mission) # print(env.observation_space) # plt.imshow(img) # plt.show()
def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies, episode, env_index, **kwargs) -> None: episode.user_data["count"] = episode.user_data["count"] + 1 env = base_env.get_sub_environments()[0] # print(env.printGrid())
if hasattr(env, "adversaries"): for adversary in env.adversaries.values(): if adversary.cur_pos[0] == env.agent_pos[0] and adversary.cur_pos[1] == env.agent_pos[1]: print(F"Adversary ran into agent. Adversary {adversary.cur_pos}, Agent {env.agent_pos}") # assert False
def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies, episode, env_index, **kwargs) -> None: # print(F"Epsiode end Environment: {base_env.get_sub_environments()}") env = base_env.get_sub_environments()[0] agent_tile = env.grid.get(env.agent_pos[0], env.agent_pos[1]) ran_into_adversary = False
if hasattr(env, "adversaries"): adversaries = env.adversaries.values() for adversary in adversaries: if adversary.cur_pos[0] == env.agent_pos[0] and adversary.cur_pos[1] == env.agent_pos[1]: ran_into_adversary = True break
episode.user_data["goals_reached"].append(agent_tile is not None and agent_tile.type == "goal") episode.user_data["ran_into_lava"].append(agent_tile is not None and agent_tile.type == "lava") episode.user_data["ran_into_adversary"].append(ran_into_adversary) episode.custom_metrics["reached_goal"] = agent_tile is not None and agent_tile.type == "goal" episode.custom_metrics["ran_into_lava"] = agent_tile is not None and agent_tile.type == "lava" episode.custom_metrics["ran_into_adversary"] = ran_into_adversary #print("On episode end print") # print(env.printGrid()) episode.hist_data["goals_reached"] = episode.user_data["goals_reached"] episode.hist_data["ran_into_lava"] = episode.user_data["ran_into_lava"] episode.hist_data["ran_into_adversary"] = episode.user_data["ran_into_adversary"]
def on_evaluate_start(self, *, algorithm: Algorithm, **kwargs) -> None: print("Evaluate Start")
def on_evaluate_end(self, *, algorithm: Algorithm, evaluation_metrics: dict, **kwargs) -> None: print("Evaluate End")
|