|
|
import gymnasium as gym import minigrid
import ray from ray.tune import register_env from ray.tune.experiment.trial import Trial from ray import tune, air from ray.rllib.algorithms.ppo import PPOConfig from ray.tune.logger import UnifiedLogger from ray.rllib.models import ModelCatalog from ray.tune.logger import pretty_print, UnifiedLogger, CSVLogger from ray.rllib.algorithms.algorithm import Algorithm from ray.rllib.algorithms.callbacks import make_multi_callbacks from ray.air import session
from torch_action_mask_model import TorchActionMaskModel from rllibutils import OneHotShieldingWrapper, MiniGridShieldingWrapper, shielding_env_creater from utils import MiniGridShieldHandler, create_shield_query, parse_arguments, create_log_dir, ShieldingConfig, test_name
from torch.utils.tensorboard import SummaryWriter from callbacks import CustomCallback
def register_minigrid_shielding_env(args): env_name = "mini-grid-shielding" register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel )
def trial_name_creator(trial : Trial): return "trial"
def ppo(args): register_minigrid_shielding_env(args) logdir = args.log_dir
config = (PPOConfig() .rollouts(num_rollout_workers=args.workers) .resources(num_gpus=args.num_gpus) .environment( env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training, },) .framework("torch") .callbacks(CustomCallback) .evaluation(evaluation_config={ "evaluation_interval": 1, "evaluation_duration": 10, "evaluation_num_workers":1, "env": "mini-grid-shielding", "env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Evaluation}}) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": UnifiedLogger, "logdir": logdir }) .training(_enable_learner_api=False ,model={ "custom_model": "shielding_model" }))
tuner = tune.Tuner("PPO", tune_config=tune.TuneConfig( metric="episode_reward_mean", mode="max", num_samples=1, trial_name_creator=trial_name_creator,
), run_config=air.RunConfig( stop = {"episode_reward_mean": 94, "timesteps_total": args.steps,}, checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=1, checkpoint_score_attribute="episode_reward_mean", ),
storage_path=F"{logdir}", name=test_name(args),
), param_space=config,)
results = tuner.fit() best_result = results.get_best_result()
import pprint
metrics_to_print = [ "episode_reward_mean", "episode_reward_max", "episode_reward_min", "episode_len_mean", ] pprint.pprint({k: v for k, v in best_result.metrics.items() if k in metrics_to_print})
def main(): ray.init(num_cpus=3) import argparse args = parse_arguments(argparse)
ppo(args)
ray.shutdown()
if __name__ == '__main__': main()
|